首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus sp. CP912, producing an extracellular biopolymer, was isolated from the soil. Maximum accumulation of the biopolymer was 10 g l–1 culture broth with a yield of 88% from glucose consumed. The biopolymer was purified with several precipitation steps using ethanol and cetyl-trimethyl-ammonium bromide. Carbohydrate analyses using various color reactions, infrared spectroscopy, and high performance liquid chromatography revealed that the biopolymer is a homopolysaccharide. The lipid emulsifying capacity of the polysaccharide was 100%, while that of xanthan gum was 94%.  相似文献   

2.
The physicochemical properties of the exopolysaccharide (EPS) produced by marine bacterium Zoogloea sp. KCCM10036 were investigated. Two types of isolated EPSs were shown to have average relative molecular masses (Mr) of 4.07 x 10(6) of CBP (cell-bound polysaccharide) and 3.43 x 10(6) of WSP (water-soluble polysaccharide), respectively. When the CBP was utilized as an emulsifier, it stabilized the emulsion for up to 148 h. Compared with other commercially available hydrocolloids such as xanthan gum, the Tween series, and Triton, the CBP showed much better emulsifying capability on a water-in-oil system. Phase separation occurred in the Tween series after 24 h, whereas the emulsion was better stabilized by the CBP. The CBP thus has potential as an emulsifying agent in commercial emulsions. The flocculating activity was also greatest at 0.01% (w/v) and decreased at higher concentrations than the optimized concentration of the WSP and CBP. The results also showed that both types of exopolysaccharides from Zoogloea sp. had excellent flocculating activity.  相似文献   

3.
A new extracellular charged polysaccharide composed mainly by galactose, with lower amounts of mannose, glucose and rhamnose, was produced by the cultivation of Pseudomonas oleovorans NRRL B-14682 using glycerol as the sole carbon source. Thermal and solid-state NMR analysis showed that this polymer is essentially amorphous, with a glass transition temperature of 155.7 degrees C. The exopolysaccharide aqueous solutions have viscoelastic properties similar to that of Guar gum, but with affinity to salts as a result of its polyelectrolyte character. In addition, the exopolysaccharide has demonstrated good flocculating and emulsifying properties and film-forming capacity. These properties make this polymer a good alternative to more expensive natural polysaccharides, such as Guar gum, in several applications in the food, pharmaceutical, cosmetic, textile, paper and petroleum industries.  相似文献   

4.
AIMS: To characterize the bioemulsifier produced by a nonfluorescent strain of Pseudomonas putida isolated from a polluted sediment and to determine the influence of pH, temperature, media composition, and carbon and nitrogen source on growth and emulsifying activity. METHODS AND RESULTS: Different indexes were employed to determine the emulsifying properties of culture supernatants of P. putida ML2 in defined and complex media. Surface tension of cell-free supernatants was measured. Purification and chemical analysis of the emulsifier was performed. Confirmed results indicate that a polysaccharide with hexasaccharide repeating units is responsible for the emulsifying activity in a mineral medium with glucose as sole carbon source. Moreover, an emulsifier is produced when growing on naphthalene. CONCLUSIONS: Culture media composition influences the amount and the properties of the emulsifier produced by this P. putida strain. Under nitrogen limiting conditions, a polysaccharide is responsible for the emulsifying activity in defined mineral media. In complex nitrogen rich medium, a different kind of emulsifier is produced. The exopolymer may contribute to hydrocarbons solubilization. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first exopolysaccharide with emulsifying properties produced by a Pseudomonas strain reported to the present. Also chemical composition is significantly different from previous reports. This strain has potential use in bioremediation and the purified polysaccharide may be used in food and cosmetic industry. Moreover, the production of the exopolymer may play a role on biofilm formation.  相似文献   

5.
Surface-Active Agents from Two Bacillus Species   总被引:12,自引:0,他引:12       下载免费PDF全文
Two Bacillus species were studied which produced bioemulsifiers; however, they were distinctly different compounds. Bacillus sp. strain IAF 343 produced unusually high yields of extracellular biosurfactant when grown on a medium containing only water-soluble substrates. The yield of 1 g/liter was appreciably better than those of most of the biosurfactants reported previously. This neutral lipid product, unlike most lipid biosurfactants, had significant emulsifying properties. It did not appreciably lower the surface tension of water. On the same medium, Bacillus cereus IAF 346 produced a more conventional polysaccharide bioemulsifier, but it also produced a monoglyceride biosurfactant. The bioemulsifier contained substantial amounts of glucosamine and originated as part of the capsule layer. The monoglyceride lowered the surface tension of water to 28 mN/m. It formed a strong association with the polysaccharide, and it was necessary to use ultrafiltration to effect complete separation. The removal of the monoglyceride caused the polysaccharide to precipitate. It is suggested that earlier reports of biopolymers which both stabilized emulsions and lowered surface tension were actually similar aggregates of lipid and bioemulsifier.  相似文献   

6.
An extracellular polymer was produced by continuous fermentation of Corynebacterium hydrocarboclastus on kerosene in a 24 liter reactor. This polymer was composed of protein, lipid, and carbohydrates. The polymer possessed surface active properties, and had two critical micelle concentrations. Its effectiveness was quite comparable to the effectiveness of synthetic surface active agents such as Tween 80 and Span 20; however, its efficiency was much lower. The polymer also had emulsifying properties. Maximum emulsification was obtained at pH 6. The emulsifying properties were unaffected by high salt concentration [up to 5% (w/v) in Na+], and tolerated a water hardness up to 5,000 ppm. A 2 hr treatment of the polymer at temperatures higher than 65 degrees C resulted in a loss of its emulsifying properties. Two microorganisms, named SLYS and Y, isolated from soil, were able to grow on the polymer as sole carbon and energy source, thus proving its biodegradability. SLYS was tentatively identified as Flavobacterium breve and Y as Flavobacterium devorans.  相似文献   

7.
Acinetobacter calcoaceticus BD4 and BD413 produce extracellular emulsifying agents when grown on 2% ethanol medium. For emulsifying activity, both polysaccharide and protein fractions were required, as demonstrated by selective digestion of the polysaccharide with a specific bacteriophage-borne polysaccharide depolymerase, deproteinization of the extracellular emulsifying complex with hot phenol, and reconstitution of emulsifier activity with pure polysaccharide and a polysaccharide-free protein fraction. Chemical modification of the carboxyl groups in the polysaccharide resulted in a loss of activity. The protein required for reconstitution of emulsifying activity was purified sevenfold. The BD4 emulsan apparently derives its amphipathic properties from the association of an anionic hydrophilic polysaccharide with proteins.  相似文献   

8.
Acinetobacter calcoaceticus BD4 and BD413 produce extracellular emulsifying agents when grown on 2% ethanol medium. For emulsifying activity, both polysaccharide and protein fractions were required, as demonstrated by selective digestion of the polysaccharide with a specific bacteriophage-borne polysaccharide depolymerase, deproteinization of the extracellular emulsifying complex with hot phenol, and reconstitution of emulsifier activity with pure polysaccharide and a polysaccharide-free protein fraction. Chemical modification of the carboxyl groups in the polysaccharide resulted in a loss of activity. The protein required for reconstitution of emulsifying activity was purified sevenfold. The BD4 emulsan apparently derives its amphipathic properties from the association of an anionic hydrophilic polysaccharide with proteins.  相似文献   

9.
AIMS: The aim of this study was to investigate the role of proteases in Bacillus spp. of rhizobacteria in suppressing nematode populations and to understand their mechanism of action. METHODS AND RESULTS: Rhizobacteria with nematicidal activity were isolated from soil samples of five root knot nematode-infested farms. Among these strains, nematotoxicities of Bacillus strains were intensively analysed. Further assays of nematicidal toxins from Bacillus sp. strain RH219 indicated an extracellular cuticle-degrading protease Apr219 was an important pathogenic factor. The Apr219 shared high similarity with previously reported cuticle-degrading proteases from Brevibacillus laterosporus strain G4 and Bacillus sp. B16 (Bacillus nematocida). The cuticle-degrading protease genes were also amplified from four other nematicidal Bacillus strains isolated from the rhizosphere. In addition to Apr219, a neutral protease Npr219 from Bacillus sp. RH219 was also investigated for activity against nematodes. CONCLUSIONS: The wide distribution of cuticle-degrading proteases in Bacillus strains with nematicidal activity suggested that these enzymes likely play an important role in bacteria-nematode-plant-environment interactions and that they may serve as important nematicidal factors in balancing nematode populations in the soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Increased understanding of the mechanism of action of Bacillus spp. against nematodes could potentially enhance the value of these species as effective nematicidal agents and develop new biological control strategies.  相似文献   

10.
Three bacterial strains isolated from waste crude oil were selected due to their capacity of growing in the presence of hydrocarbons and production of bioemulsifier. The genetic identification (PCR of the 16S rDNA gene using fD1 and rD1 primers) of these strains showed their affiliation to Bacillus subtilis, Alcaligenes faecalis and Enterobacter sp. These strains were able to emulsify n-octane, toluene, xylene, mineral oils and crude oil, look promising for bioremediation application. Finally, chemical composition, emulsifying activity and surfactant activity of the biopolymers produced by the selected strains were studies under different culture conditions. Our results showed that chemical and functional properties of the bioemulsifiers were affected by the carbon source added to the growth media.  相似文献   

11.
A thermophilic microorganism, Bacillus thermoleovorans ID-1, isolated from hot springs in Indonesia, showed extracellular lipase activity and high growth rates on lipid substrates at elevated temperatures. On olive oil (1.5%, w/v) as the sole carbon source, the isolate ID-1 grew very rapidly at 65 degrees C with its specific growth rate (2.50 h(-1)) and its lipase activity reached the maximum value of 520 U l(-1) during the late exponential phase and then decreased. In addition to this, isolate ID-1 could grow on a variety of lipid substrates such as oils (olive oil, soybean oil and mineral oil), triglycerides (triolein, tributyrin) and emulsifiers (Tween 20, 40). The excreted lipase of ID-1 was purified 223-fold to homogeneity by ammonium sulfate precipitation, DEAE-Sephacel ion-exchange chromatography and Sephacryl S-200 gel filtration chromatography. As a result, the relative molecular mass of the lipase was determined to be 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed optimal activity at 70-75 degrees C and pH 7.5 and exhibited 50% of its original activity after 1 h incubation at 60 degrees C and 30 min at 70 degrees C and its catalytic function was activated in the presence of Ca(2+) or Zn(2+).  相似文献   

12.
During screening for novel emulsifiers and surfactants, a marine alphaproteobacterium, Antarctobacter sp. TG22, was isolated and selected for its production of an extracellular emulsifying agent, AE22. This emulsifier was produced optimally in a low-nutrient seawater medium supplemented with glucose and was extractable by cold ethanol precipitation of the high-molecular-weight fraction (>100 kDa). Production of AE22 commenced towards the late exponential phase of growth, with maximum emulsifying activity detected after approximately 4 days of the cells entering the death phase. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed AE22 to be a high-molecular-weight (>2,000 kDa) glycoprotein with high uronic acids content, thus denoting an apparent polyanionic structure. Functional characterization showed this polymer to compare well to xanthan gum and gum arabic as an emulsion-stabilizing agent for a range of different food oils. However, AE22 exhibited better stabilizing than emulsifying properties, which could be conferred by its viscosifying effect in solution or from certain chemical groups found on the polysaccharide or protein moieties of the polymer. This new high-molecular-weight glycoprotein exhibits interesting functional qualities that are comparable to other biopolymers of this type and shows particular promise as an emulsion-stabilizing agent in biotechnological applications.  相似文献   

13.
Sixteen strains of polymer-producing bacteria were isolated from the activated sludge samples taken from two seafood processing plants in Southern Thailand. Their culture broths possessed the ability to flocculate kaolin suspension in the presence of 1% CaCl2. Based on the flocculating activity, the strain S11 was selected and identified to be a Klebsiella sp. using the partial 16S rRNA sequencing method. The growth of the isolated Klebsiella sp. was maximal (1.026 g l−1 dry cell mass) after 1 day cultivation while the highest polymer yield (0.973 g l−1) was achieved after 5 days cultivation. The flocculating activity of the culture broth, however, was highest after 2 days cultivation. The polymer was identified to be an acidic polysaccharide containing neutral sugar and uronic acid as its major and minor components, respectively. Results on the properties of the partially purified polysaccharide from Klebsiella sp. S11 revealed that it consisted of galactose, glucose and mannose in an approximate ratio of 5:2:1. It was soluble in acidic or basic solutions but not in organic solvents. Its molecular mass was greater than 2 × 106 Da. Infrared spectra showed the presence of hydroxyl, carboxyl and methoxyl groups in its molecules. Differential scanning calorimetry of the polysaccharide indicated the crystalline melting point (T m) at 314 °C. The optimum dosage of polysaccharide to give the highest flocculating activity was 15 mg l−1 in the presence of 1% CaCl2. Received: 8 February 1999 / Received last revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

14.
Alasan, the bioemulsifier of Acinetobacter radioresistens KA53, is a high-molecular-mass complex of polysaccharide and protein. Enrichment culture was used to isolate a bacterial strain that grew on alasan as the sole source of carbon and energy, causing the loss of the protein portion of alasan, as well as the emulsifying activity. The degradation was mediated by extracellular proteinases/alasanases. One of these enzymes, referred to as alasanase II, was purified to homogeneity. Alasanase II, as well as pronase, inactivated alasan, whereas a polysaccharide-degrading enzyme mixture, snail juice, had no effect on emulsifying activity. Deproteinization of alasan with phenol yielded a viscous polysaccharide with no emulsifying activity. Heating alasan to 50 °C led to a 2.5-fold irreversible increase in viscosity with no change in emulsifying activity. Heating to 60°–90 °C caused a drop in viscosity and a 5.8-fold increase in emulsifying activity. The deproteinized alasan showed no increase in emulsifying activity and only small changes in viscosity when heated. Received: 31 October 1997 / Accepted: 29 November 1997  相似文献   

15.
A new thermoalkaliphilic bacterium was isolated from a textile wastewater drain and identified as a new Bacillus sp. (Bacillus SF). Because of its high pH stability and thermostability, a catalase-peroxidase (CP) from this strain has potential for the treatment of textile bleaching effluents. The CP from Bacillus SF was purified to more than 70.3-fold homogeneity using fractionated ammonium sulfate precipitation, hydrophobic interaction, and anion-exchange and gel-filtration chromatography. The native CP had a molecular mass of 165 kDa and was composed of two identical subunits. The isoelectric point of the protein was at pH 6.0. Peptide mass mapping using matrix-assisted laser desorption ionization-mass spectrometry showed a homology between the CP from Bacillus SF and the CP from Bacillus stearothermophilus. The apparent Km value of the catalase activity for H2O2 was 2.6 mM and the k(cat) value was 11,475 s(-1). The enzyme showed high catalase activity and an appreciable peroxidase activity with guaiacol and o-dianisidine. The enzyme was stable at high pH, with a half-life of 104 h at pH 10 and 25 degrees C and 14 h at 50 degrees C. The enzyme was inhibited by azide and cyanide, in a competitive manner, but not by the catalase-specific inhibitor 3-amino-1,2,4-triazole.  相似文献   

16.
Aims: This work was aimed to isolate, purify and characterize an extracellular polysaccharide (EPS) produced by a freshwater dynamic sediment‐attached micro‐organism, Bacillus megaterium RB‐05, and study its emulsifying potential in different hydrocarbon media. Methods and Results: Bacillus megaterium RB‐05 was found to produce EPSs in glucose mineral salts medium, and maximum yield (0·864 g l?1) was achieved after 24‐h incubation. The recovery rates of the polysaccharide material by ion‐exchange and gel filtration chromatography were around 67 and 93%, respectively. As evident from HPLC and FT‐IR analyses, the polysaccharide was found to be a heteropolymer‐containing glucose, galactose, mannose, arabinose, fucose and N‐acetyl glucosamine. Different oligosaccharide combinations namely hexose3, hexose4, hexose5deoxyhexose1 and hexose5deoxyhexose1pentose3 were obtained after partial hydrolysis of the polymer using MALDI‐ToF‐MS. The polysaccharide with an average molecular weight of 170 kDa and thermal stability up to 180°C showed pseudoplastic rheology and significant emulsifying activity in hydrocarbon media. Conclusions: Isolated polysaccharide was found to be of high molecular weight and thermally stable. The purified EPS fraction was composed of hexose, pentose and deoxyhexose sugar residues, which is a rare combination for bacterial polysaccharides. Emulsifying property was either better or comparable to that of other commercially available natural gums and polysaccharides. Significance and Impact of the Study: This is probably one of the few reports about characterizing an emulsifying EPS produced by a freshwater sediment‐attached bacterium. The results of this study contribute to understand the influence of chemical composition and material properties of a new microbial polysaccharide on its application in industrial biotechnology. Furthermore, this work reconfirms freshwater dynamic sediment as a potential habitat for bioprospecting extracellular polymer–producing bacteria. This study will improve our knowledge on the exploitation of a nonconventional renewable resource, which also seems to be ecologically significant.  相似文献   

17.
Zheng Y  Ye ZL  Fang XL  Li YH  Cai WM 《Bioresource technology》2008,99(16):7686-7691
A bioflocculant-producing bacterium isolated from soil was identified as Bacillus sp. and the bioflocculant produced was named MBFF19. Effects of physico-chemical conditions including pH, carbon sources and nitrogen sources on MBFF19 production were studied. Chemical analyses of the purified bioflocculant MBFF19 indicated that it was a sugar-protein derivative, composed of neutral sugar (3.6%, w/w), uronic acid (37.0%, w/w), amino sugars (0.5%, w/w) and protein (16.4%, w/w). The two neutral sugar components were mannose and glucose and the molar ratio was 1.2:1. Infrared spectrophotometry analysis revealed that MBFF19 contained carboxyl, hydroxyl and methoxyl groups in its structural. Flocculating properties of bioflocculant MBFF19 was examined using kaolin, activated carbon and fly coal suspension. Cation supplement had no positive effects on the flocculating activity whereas the presence of Fe3+ inhibited flocculation. Influences of pH and bioflocculant dosage on the flocculation were also examined.  相似文献   

18.
AIMS: The isolation and identification of new Bacillus sp. capable of growing under highly alkaline conditions as alkaline protease producers. METHODS AND RESULTS: A Bacillus strain capable of growing under highly alkaline conditions was isolated from compost. The strain is a Gram-positive, spore-forming, motile, aerobic, catalase- and oxidase-positive, alkaliphilic bacterium and designated as GMBAE 42. Good growth of the strain was observed at pH 10. The strain was identified as Bacillus clausii according to the physiological properties, cellular fatty acid composition, G + C content of genomic DNA and 16S rRNA gene sequence analyses. The result of 16S rRNA sequence analyses placed this bacterium in a cluster with B. clausii. The G + C content of the genomic DNA of the isolate GMBAE 42 was found to be 49 mol%. The crude extracellular alkaline protease produced by the isolate showed maximal activity at pH 11.0 and 60 degrees C. CONCLUSIONS: The results suggest that isolated strain GMBAE 42 is a new type of B. clausii capable of growing at pH 10.0 and produce extracellular alkaline protease very active at pH 11.0. SIGNIFICANCE AND IMPACT OF THE STUDY: Isolated strain could be used in commercial alkaline protease production and its enzyme can be considered as a candidate as an additive for commercial detergents.  相似文献   

19.
Flocculation properties of pectin in various suspensions   总被引:5,自引:0,他引:5  
Pectin had a flocculating activity and its flocculating activities in various suspensions were investigated. Flocculating activity of pectin in a kaolin suspension was markedly stimulated by the addition of Al3+ and Fe3+ to the suspension. Optimum temperature for flocculating activity of pectin in the kaolin suspension was around 30 degrees C and high flocculating activity was obtained when 30 mg/l of pectin and 0.2 mM Fe3+ were added to the suspension. Other inorganic suspensions of activated carbon and acid clay were flocculated by pectin in the presence of Al3+ or Fe3+. Flocculation of organic suspensions such as cellulose and yeast by pectin occurred when 0.1-0.2 mM Fe3+ was present in the suspensions.  相似文献   

20.
Two planktonic cyanobacteria, Anabaena sp. N1444 and Anabaena sp. PC-1, and a green eukaryotic alga, Scene-desmus sp., produced extracellular flocculants. The flocculant of Anabaena PC-1, when purified, was found to be a macromolecular polysaccharide consisting of neutral sugars, uronic acids, and proteins, but not keto acids, hexosamines nor fatty acids. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The flocculating activity was high under acidic conditions, slightly enhanced by the addition of salts and metals, and increased to about 40% upon heating at 100 °C for 7 min. The flocculant could flocculated various inorganic and organic compounds in solution. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号