首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute oral administration of ethanol (3.2g/kg) to normal rats increased DOPAC levels and DOPA formation in the caudate nucleus but had no effect in the substantia nigra and frontal cortex and failed to modify dopamine (DA) levels in any of the above brain areas. Complete tolerance to the stimulant effect on DOPA formation developed after chronic ethanol administration (3.2g daily for 60 days). In chronically treated rats, 24 hrs after ethanol withdrawal, DA levels in the frontal cortex were 60% higher than in controls and were unchanged in the substantia nigra and caudate nucleus as were DOPAC levels in all areas studied. At this time, the administration of ethanol caused a long-lasting depletion of DA and a parallel increase of DOPAC levels in all areas analyzed. The results indicate that acute and chronic ethanol release DA stores but, in the acute condition, DA depletion is prevented by increased synthesis.  相似文献   

2.
It was shown, that content of dopamine and its metabolites (DOPAC and HVA) are the same in two groups of rats with different time of immobilization in forced swimming test. One group of low active (LA) animals experienced the immobilization more than 300s, other high active (HA) rats for less than 120 s. Ethanol (2 g/kg per oris) increased the level of DA in the striatum and medial prefrontal cortex only in LA rats and besides, the concentration of dopamine after ethanol administration was higher in the n. accumbens of LA rats, than in that of HA rats. The authors suggest that differences in dopamine content between LA and HA rats are connected with different levels of voluntary alcohol consumption. The opportunity to use both groups of HA and LA rats for developing models of pathogenic heterogeneity of alcoholism is discussed.  相似文献   

3.
Interactions of the potent phencyclidine receptor agonist MK-801 with the dopaminergic system were examined in various brain regions in the rat. MK-801 increased dopamine (DA) metabolism in the pyriform cortex, entorhinal cortex, prefrontal cortex, striatum, olfactory tubercle, amygdala, and septum without affecting DA metabolism in the cingulate cortex and nucleus accumbens. In pyriform cortex and amygdala, MK-801 was more potent than phencyclidine at increasing DA metabolism. Local injections of MK-801 into ventral tegmental area and into the amygdala/pyriform cortex interface indicated that MK-801 may act at the cell body as well as the nerve terminal level to increase DA metabolism and that ongoing dopaminergic neuronal activity is a prerequisite for full drug action.  相似文献   

4.
Acute and chronic effects of γ-butyrolactone-γ-carbonyl-histidyl-prolinamide (DN-1417) were investigated on motor activity, dopamine (DA) metabolites and DA receptors in various brain regions of rats. The motor activity, as measured with Automex recorder, was enhanced after a single injection with DN-1417 (20 mg/kg, IP), and the motor stimulating action persisted during 21 daily injections. Acute DN-1417 elevated both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in 7 brain regions, prefrontal cortex polar, medial and lateral fields, nucleus accumbens, olfactory tubercles, amygdala and striatum. After chronic treatment for 7 days, the acute effect of DN-1417 on DA metabolites disappeared in all regions except for the striatum in which DN-1417 still increased HVA and DOPAC. The response of striatal DA metabolites was also observed after chronic treatment for 21 days. Chronic DN-1417 produced no significant change in 3H-spiperone binding in the prefrontal cortex, nucleus accumbens, olfactory tubercles and striatum, while striatal 3H-DA binding displaced by 30 nM spiperone was enhanced after chronic treatment. These results indicate that DN-1417 interacts with mesocortical, mesolimbic and nigrostriatal DA systems in the different modes of action. The lack of tolerance to motor hyperactivity, however, raises the question as to whether DN-1417-induced hyperactivity may be mediated by the activation of mesolimbic DA neurons. The involvement of nigrostriatal neurons in DN-1417-induced motor hyperactivity is suggested.  相似文献   

5.
The effect of systemic administration of desmethylimipramine (DMI) and oxaproptiline (OXA), two inhibitors of the noradrenaline (NA) reuptake carrier, on the in vivo extracellular concentrations of dopamine (DA) was studied by transcerebral dialysis in the prefrontal cortex and in the dorsal caudate of freely moving rats. In the NA-rich prefrontal cortex, either drug increased extracellular DA concentrations whereas in the dorsal caudate neither was effective. Haloperidol increased extracellular DA concentrations more effectively in the dorsal caudate than in the prefrontal cortex. Pre-treatment with DMI or OXA, which failed to modify the effect of haloperidol in the dorsal caudate, potentiated its action in the prefrontal cortex. 6-Hydroxydopamine lesioning of the dorsal NA bundle prevented the ability of OXA to increase DA concentrations. The results suggest that reuptake into NA terminals in an important mechanism by which DA is cleared from the extracellular space in a NA-rich area such as the prefrontal cortex. The elevated extracellular concentrations of DA resulting from blockade of such mechanism by tricyclic antidepressants may play a role in the therapeutic effects of these drugs.  相似文献   

6.
Abstract: We examined whether prior exposure to chronic cold (17–28 days, 5°C) alters basal or stress-evoked (30-min tail shock) catecholamine release in medial prefrontal cortex, nucleus accumbens, and striatum, using in vivo microdialysis. Basal norepinephrine (NE) concentrations in medial prefrontal cortex did not differ between chronically cold-exposed rats and naive control rats (2.7 ± 0.3 vs. 2.5 ± 0.2 pg/20 µl, respectively). Basal dopamine (DA) efflux in any of the brain regions was not significantly different between chronically cold-exposed rats and naive rats. However, a trend for lower basal DA efflux in the cold-exposed relative to naive rats was observed in medial prefrontal cortex (1.5 ± 0.2 vs. 2.2 ± 0.3 pg/20 µl, respectively), nucleus accumbens (3.7 ± 0.8 vs. 5.4 ± 0.9 pg/20 µl, respectively), and striatum (4.4 ± 0.5 vs. 7.2 ± 1.5 pg/20 µl, respectively). In medial prefrontal cortex of rats previously exposed to cold, tail shock elicited a greater increase from baseline in both DA and NE efflux relative to that measured in naive rats (DA, 2.3 ± 0.3 vs. 1.2 ± 0.1 pg, respectively; NE, 3.8 ± 0.4 vs. 1.4 ± 0.2 pg, respectively). However, in nucleus accumbens or striatum of rats previously exposed to cold, the stress-induced increase in DA efflux was not significantly different from that of naive rats (nucleus accumbens, 1.8 ± 0.7 vs. 1.5 ± 0.3 pg, respectively; striatum, 1.9 ± 0.4 vs. 2.6 ± 0.7 pg, respectively). Thus, both cortical NE projections and cortically projecting DA neurons sensitize after chronic exposure to cold. In contrast, subcortical DA projections do not sensitize under these conditions.  相似文献   

7.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

8.
G P Mereu  C Pacitti  A Argiolas 《Life sciences》1983,32(12):1383-1389
The effect of (-)-cathinone (CAT), an alkaloid from khat leaves, on brain dopamine (DA) metabolism and on the firing rate of nigral DA neurons was studied in rats, in comparison with that of d-amphetamine. Like d-amphetamine, CAT (8-40 mg/kg i.p.) decreased DOPAC levels in the caudate nucleus, nucleus accumbens and frontal cortex, without modifying DA concentrations. CAT showed approximately one fifth of the potency of d-amphetamine in this effect. CAT, injected i.v. to unanesthetized, paralyzed rats, inhibited the firing rate of DA neurons in the substantia nigra, pars compacta, showing a similar potency to that of d-amphetamine in this respect. CAT-induced inhibition of dopaminergic firing was reversed by haloperidol.  相似文献   

9.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dopamine (DA) in the medial prefrontal cortex (mPFC) has been implicated in the regulation of subcortical DA function. To further characterize the potential interaction between cortical and subcortical DA systems, the short- and long-term neurochemical consequences of 6-hydroxydopamine (6-OHDA) lesions of the mPFC of rats were investigated in the mPFC and in its subcortical target structures. 4 to 5, 10 to 12 and 32 to 36 days after infusion of 6-OHDA, DA was depleted to a larger extent than noradrenaline and serotonin. No lesion-induced changes of DA and its metabolites were detected in subcortical structures. These results show that prefrontal 6-OHDA lesions produce immediate and long lasting depletions of prefrontal monoamines, especially of DA, without increasing basal DA metabolism in the striatum and nucleus accumbens.  相似文献   

11.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

12.
The study analyzed the effects of chronic alcohol ingestion on the ultrastructure of the lining epithelium of the hard palatine mucosa of rats UChA and UChB (lines with voluntary alcohol consumption) in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the digestive system. Thirty female adult animals aged 120 days were divided into three experimental groups. (1) Ten UChA rats (genetically low ethanol consumer) with voluntary intake of 10% v/v (5.45 g/kg/day) ethanol solution and water. (2) Ten UChB (genetically high ethanol consumer) rats with voluntary intake of 10% v/v (7.16 g/kg/day) ethanol solution and water. (3) Ten Wistar rats with voluntary ad libitum water intake (control group). Both groups received Nuvital pellets ad libitum. The IGFR-I expression was intense in both experimental groups. The epithelial cells of the alcoholic rats UChA and UChB showed many alterations such as the presence of lipid droplets, altered nuclei, nuclei in corneum layer and disrupted mitochondria. It was concluded that ethanol intake induces ultrastructural lesions in the hard palatine mucosa.  相似文献   

13.
Abstract: The present investigation examined the effect of in vivo antagonism of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor by 2,3-dihydro-6-nitro-7-sulfamoylbenzo( f )quinoxaline (NBQX) on local cerebral glucose utilization (LCGU) using the quantitative autoradiographic Pdeoxy[14C]-glucose method in conscious rats. NBQX, at doses of 10, 30, and 60 mg/kg i.p. or three injections of 30 mg/kg i.p., did not increase LCGU in limbic areas such as the primary olfactory cortex. olfactory tubercle, hippocampus, dentate gyrus, posterior cingulate cortex, mamillary body, caudate nucleus, anterior thalamic nucleus, and nucleus accumbens. NBQX, at doses of 260 mg/kg i.p., decreased LCGU in these brain areas. These data demonstrate that in vivo antagonism of the AMPA receptors by NBQX produces a pattern of alterations in metabolic activity, different from that produced by noncompetitive antagonists of the N-methyl-D-aSpartate (NMDA) receptor, e.g., phencyclidine and MK-801. Combined with a lack of "phencyclidine-like" behavior produced by NBQX. these data suggest that antagonism of the AMPA receptor represents a novel mechanism to block excitatory amino acids in the CNS, which may be devoid of unwanted behavioral side effects associated with noncompetitive antagonism of the NMDA receptor.  相似文献   

14.
Geary N  Wolfe A  Polidori C  Policani F  Massi M 《Peptides》2004,25(7):1185-1194
Ethanol ingestion, like food ingestion, stimulates release of the signaling molecule cholecystokinin (CCK) from the small intestine. Here, we investigated the possibility that ethanol-induced CCK release might be a negative-feedback control of ethanol ingestion, similar to its function as part of the mechanism by which ingested food produces meal-ending satiation. We used Sardinian alcohol-preferring (sP) and Marchesian Sardinian (msP) alcohol-preferring rats, two apparently identical substrains that spontaneously ingest pharmacologically relevant amounts of ethanol, as well as their background strain, Wistar (W) rats. We demonstrated that: (1) intraperitoneal (IP), but not intracerebroventricular, injections of 0.5-4 microg/kg CCK-8 produced transient, dose-related reductions in 10% ethanol ingestion; (2) this inhibitory effect of CCK-8 on ethanol intake appeared behaviorally similar to its inhibitory action on ingestion of sucrose solutions; (3) the inhibitory effect of IP CCK-8 on ethanol ingestion occurred without evidence of tolerance when tests were repeated on consecutive days; (4) IP CCK-8 reduced ethanol intake despite simultaneously reducing blood ethanol levels (BALs); and (5) antagonism of CCK1 receptors with devazepide increased ethanol intake, indicating that endogenous CCK normally limits the size of bouts of ethanol ingestion. These results implicate peripheral CCK in the control of ethanol ingestion in sP and msP alcohol-preferring rats.  相似文献   

15.
Heterogeneity of D2 dopamine receptors in different brain regions.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen.  相似文献   

16.
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency-related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation-induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.  相似文献   

17.
Circadian rhythms in noradrenergic (NE) and dopaminergic (DA) metabolites and in cyclic nucleotide production were measured in discrete regions of rat brain. A circadian rhythm was found in the concentration of the NE metabolite, 3-methoxy-4-hydroxyphenylglycol (MHPG), in the hippocampus. No MHPG rhythm was found in frontal, cingulate, parietal, piriform, insular or temporal cortex, or in hypothalamus. Circadian rhythms in the concentration of the NE metabolite, 3,4-dihydroxyphenylglycol (DHPG), occurred in occipital and parietal cortex and hypothalamus, with no rhythm observable in temporal or insular cortex, hippocampus, pons-medulla or cerebellum. The 24-hr mean concentration of MHPG varied 3.5-fold, highest in cingulate and lowest in parietal, temporal and occipital cortex. The 24-hr mean concentration of DHPG varied 6-fold, highest in hypothalamus and lowest in parietal cortex. Circadian rhythms in the concentration of the DA metabolite, homovanillic acid (HVA), were found in olfactory tubercle, amygdala and caudate-putamen, but not in nucleus accumbens. A circadian rhythm in the concentration of the DA metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), occurred in nucleus accumbens, but not in olfactory tubercle or caudate-putamen. The mean 24-hr concentration of HVA was highest in caudate-putamen, intermediate in nucleus accumbens, and lowest in olfactory tubercle and amygdala. The mean 24-hr concentration of DOPAC was highest in nucleus accumbens and lower in olfactory tubercle and caudate-putamen. Circadian rhythms were found in the concentration of cyclic GMP (cGMP) in all regions measured except parietal cortex. The mean 24-hr concentration varied 128-fold, highest in nucleus accumbens, frontal poles, and hypothalamus and lowest in cingulate cortex. Circadian rhythms in cyclic AMP (cAMP) concentration were found in piriform, temporal, occipital, cingulate, and parietal cortex, amygdala and nucleus accumbens. No rhythms were found in frontal or insular cortex, hypothalamus, hippocampus, caudate-putamen or olfactory tubercle. The 24-hr mean cAMP concentration varied 4-fold, highest in parietal cortex and lowest in caudate-putamen and amygdala. Norepinephrine metabolites and dopamine metabolites were rhythmic in few regions. It is, therefore, unlikely that the rhythmicity measured in adrenergic receptors is, in general, a response to rhythmic changes in adrenergic transmitter release. The putative second messenger response systems, especially cGMP, were more often rhythmic. The rhythms in cGMP are parallel in form and region to those in the alpha 1-adrenergic receptor and may act as 2nd messenger for that receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Huang EY  Li JY  Wong CH  Tan PP  Chen JC 《Peptides》2002,23(3):489-496
Neuropeptide FF (NPFF) is an endogenous anti-opioid peptide. NPFF could potentiate the naloxone-precipitated morphine withdrawal syndromes in morphine-dependent rats, indicating the possible involvement of the endogenous NPFF system in opioid analgesia and dependence. The present study was performed to examine the effects of dansyl-PQRamide (dns-PQRa), a putative NPFF antagonist, on conditioned place preference (CPP), in addition, its interaction with the opioid system. Two CPP experiments were conducted. First, rats were treated with dns-PQRa (4-13 mg/kg, i.p.) and paired with the non-preferred compartment while the vehicle was paired with the preferred compartment. Second, similar to experiment 1 except naloxone (1 mg/kg, i.p.) was given 10 min prior to each dns-PQRa administration. The post-drug place preference was examined after 4 alternative pairings. Another group of animals after repetitive dns-PQRa treatments were analyzed for levels of neurotransmitters in discrete brain areas. Dns-PQRa (4-13 mg/kg, i.p.) induced a significant dose-dependent CPP. The dns-PQRa-induced CPP was completely blocked by pretreatment with 1 mg/kg i.p. naloxone, while naloxone alone did not induce any place aversion. The chronic dns-PQRa-treated (13 mg/kg, i.p., b.i.d.) rats caused a significant increase in 3,4-dihydroxyphenylacetic acid and 5-hydroxyindoleacetic acid in the olfactory tubercle compared to the vehicle-treated controls. There was also an increase in the turnover of serotonin in the olfactory tubercle, nucleus accumbens and medial prefrontal cortex. These results suggest that blockade of the NPFF system produces rewarding, possibly via an inhibition of the anti-opioid action of NPFF. These results also reveal a close relationship between NPFF, drug rewarding and the dopaminergic and serotoninergic neurons in the mesolimbic system.  相似文献   

19.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

20.
Spontaneously hypertensive rats (SHR) were administered either 2.4 g/kg ethanol or an isocaloric glucose daily for 4 weeks and the levels of norepinephrine (NE), epinephrine (EP), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in different brain regions were determined. Results indicated a 3-fold increase in NE level in brain stem and hypothalamus and more than 2-fold increase in DA in corpus striatum in alcohol-treated rats as compared to controls. There was a significant increase in the level of DA in the corpus striatum but the levels in cerebral cortex, brain stem and hippocampus were decreased instead. Decreases in 5-HT levels were found in hypothalamus, brain stem, cortex and cerebellum of alcohol-treated brain as compared to untreated controls. These results indicate alterations of the biogenic amine contents in different regions of the SHR brain after chronic ethanol ingestion. Since stimulated release of biogenic amines in the SHR brain has been implicated in the regulation of blood pressure, changes due to ethanol ingestion may be a risk factor in hypertensive patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号