首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

2.
为了筛选培育对苹果绵蚜(Eriosoma lanigerum Hausmann)的抗性品种,实现持续有效治理苹果绵蚜的目的,通过测定红富士、金帅、昭锦108、秦冠、红将军等5种不同苹果品种春梢生长期被苹果绵蚜危害前后枝条内可溶性糖、蛋白质、游离氨基酸、总酚含量以及防御性酶的活性变化,探讨苹果生理指标与抗蚜性的关系。结果表明,被害后可溶性糖含量除红将军外均有所上升,其中红富士上升达13.7%;蛋白质含量除红富士外均有所降低;氨基酸含量均有所上升,其中红将军变化明显,变化率达68.8%。酚类物质是一种重要的抗蚜物质,红富士、昭锦108、秦冠被害后总酚含量均升高,其中昭锦108、秦冠中总酚含量上升率约为红富士的2倍。红富士品种正常枝条内超氧化物歧化酶(Superoxide Dismutase,SOD)、多酚氧化酶(Polyphenol Oxidase,PPO)、过氧化物酶(Peroxidase,POD)以及过氧化氢酶(Catalase,CAT)活性均显著低于昭锦108,被害后各苹果枝条SOD活性均出现上升趋势,除红将军的PPO、POD活性降低外,其他品种均升高;金帅、红富士的CAT活性上升明显,分别为110.8%、45.5%。植物的防御性酶与其抗虫性有密切关系,苹果春梢生长期对苹果绵蚜的抗性与苹果体内的可溶性糖、游离氨基酸、SOD、PPO、POD以及CAT活性均有关,而且不同苹果品种被害后生理指标的变化也与其抗蚜性有一定关系。  相似文献   

3.
Succinate dehydrogenase inhibitor (SDHI) fungicides constitute a relatively recent fungicide class registered for the treatment of grey mould on grapevine in Italy. The sensitivity profile to a novel compound fluopyram was established for a set of 203 Botrytis cinerea isolates collected from Sicilian vineyards within 2009–2012 prior its introduction into market. In addition, its performances were compared in in vitro and in vivo assays with other registered SDHI fungicide boscalid, to evaluate their frequency distributions EC50 values and cross‐resistance patterns. Results of the article showed that EC50 values for fluopyram ranged from 0.05 to 1.98 µg mL?1. Although EC50 values of boscalid ranged from 0.01 to 89.52 µg mL?1, no cross‐resistance relationship was observed between the two fungicides (r = 0.003; P = 0.964) within our B. cinerea population. On further confirming these data, boscalid failed in controlling grey mould infections when boscalid‐resistant isolates were inoculated on grape berries whereas fluopyram exhibited a good efficacy against the same isolates. This study represents the first report on the baseline sensitivity to fluopyram within B. cinerea population from Sicilian table grape vineyards in Italy, and it clearly shows the lack of cross‐resistance in vitro and in vivo between fluopyram and boscalid for the field pathogen isolates. These results provided useful information for managing of fungicide resistance suggesting that fluopyram could be a valid alternative to boscalid for the control of grey mould of table grape.  相似文献   

4.
5.
Grey mould, caused by the fungus Botrytis cinerea, is one of the most destructive diseases in greenhouses for which serious fungicide resistance has developed. Between 2003 and 2005, 213 isolates of B. cinerea from two geographical regions were characterised for baseline sensitivity to kresoxim‐methyl. In the absence of salicylhydroxamic acid (SHAM), the mean 50% effective concentration (EC50) values were 6.67 ± 0.61 (mean ± SD) and 0.37 ± 0.10 mg L?1 during growth and germination, respectively. In the presence of 100 mg L?1 SHAM, baseline sensitivities were distributed as unimodal curves with mean EC50 values of 2.38 ± 0.21 and 0.28 ± 0.09 mg L?1 for inhibiting growth and inhibiting germination, respectively. The mixture of kresoxim‐methyl and boscalid showed good control efficacy against strawberry grey mould disease. After the mixture was extensively used on strawberry for 2 years, 50 isolates were collected and determined for their sensitivity to kresoxim‐methyl and boscalid, respectively. The mean EC50 of germination inhibition by boscalid was 0.39 ± 0.08 mg L?1. The mean EC50 of germination inhibition by kresoxim‐methyl was 0.26 ± 0.07 mg L?1 in the presence of 100 mg L?1 SHAM. Sensitivities of B. cinerea to both kresoxim‐methyl and boscalid did not show any significant decrease. These results suggest that their mixture is a satisfactory alternative candidate for management of grey mould disease in greenhouses.  相似文献   

6.
The yeast Cryptococcus albidus, originally isolated from mature strawberry fruits, was tested for antagonistic activity against Botrytis cinerea, the causal agent of grey mould in strawberries. Conidial germination and germ tube growth of conidia of B. cinerea were inhibited by a cell suspension of the antagonist in aqueous strawberry fruit pulp suspension (1%) after 6 and 24 hours of incubation. Application of a cell suspension (1 × 106 cells/ml) on detached strawberry leaf disks incubated at 10°C reduced incidence and conidiophore density of B. cinerea by 86 and 99%, respectively, but effectiveness was reduced at higher temperatures. Treatments with C. albidus during bloom of strawberries reduced incidence of grey mould on ripe strawberry fruits after harvest by 33, 28 and 21% in three years of field trials. The effectiveness of the yeast was increased when formulation substances (alginate, xanthan and cellulose) were added to the cell suspension.  相似文献   

7.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

8.
Antifungal activity of the essential oils of Carum carvi and Pimpinella anisum against Botrytis cinerea fruit rot of key kiwi fruit was studied. In vitro experiments, antifungal activities of essential oils were tested on potato dextrose agar media. Results of an in vitro experiment showed that these essential oils, at all applied concentrations, inhibited grey mould growth. Black caraway essential oil at concentrations of 600 and 800?μL?L?1 inhibited germination spores of grey mould. Then, the fruits were artificially inoculated with a suspension at 1?×?105?conidia/ml and then treated with different concentrations of these essential oils. The results of in vivo conditions showed that black caraway and anise essential oils applied at all concentrations were increasing the shelf life and inhibited the grey mould growth on kiwi fruits completely in comparison to control. The result showed that black caraway and anise oils at a concentration of 800?μL?L?1 had higher total soluble solids, ascorbic acid, titrable acidity and antioxidant content compared to untreated fruits.  相似文献   

9.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   

10.
For increasing the shelf life and control of devastating fungal pathogen grey mould (Botrytis cinerea), tomato fruits during storage were applied different concentrations of ammi (Carum copticum) and anise (Pimpinella anisum) essential oils. First, antifungal activities of essential oils were tested on artificial growth media. The growth of grey mould was completely inhibited by ammi and anise essential oils at relatively higher concentrations. In second stage, fruits were infected artificially by grey mould spore and then treated with different concentrations of these essential oils. The results of in vivo conditions showed that ammi and anise essential oils applied at all concentrations were increasing the shelf life and inhibited the grey mould growth on tomato fruits completely in comparison to control. Fruits treated with these essential oils had significantly higher total soluble solids (TSS), ascorbic acid, β-carotene and lycopene content compared to control fruits.  相似文献   

11.
Fruit grey mould, caused by the fungus Botrytis cinerea, is known to be a harmful disease of strawberry at postharvest stage. However, effects of an application of biological control agents (BCAs) on strawberry fruit in terms of shift in the microbial community are still unknown. The present research aimed to investigate the effects of an application of BCAs on postharvest microbial populations present on strawberry fruits. Strawberry plants were sprayed with three kinds of BCA, RhizoVital 42 fl. (Bacillus amyloliquefaciens FZB42), Trianum‐P (Trichoderma harzianum T22) and Naturalis (Beauveria bassiana ATCC 74040), targeting Botrytis cinerea fungus. Control plots were composed of water and fungicide treatments. Microbial communities (bacteria and fungi) were analysed via next‐generation sequencing on an Illumina MiSeq. Analysis of 16S RNA and ITS rRNA sequences indicated that the BCAs application modified both bacterial and fungal community compositions and diversity. An application of two BCAs together had more effects on microbial community composition than a single application. These results suggest that BCAs can modify bacterial and fungal community composition and diversity on strawberry fruits, which may consequently improve the efficiency and establishment of these products on control of postharvest diseases of fruits, such as grey mould.  相似文献   

12.
Botrytis cinerea is the causal agent of grey mould for more than 200 plant species, including economically important vegetables, fruits and crops, which leads to economic losses worldwide. Target of rapamycin (TOR) acts a master regulator to control cell growth and proliferation by integrating nutrient, energy and growth factors in eukaryotic species, but little is known about whether TOR can function as a practicable target in the control of plant fungal pathogens. Here, we characterize TOR signalling of B. cinerea in the regulation of growth and pathogenicity as well as its potential value in genetic engineering for crop protection by bioinformatics analysis, pharmacological assays, biochemistry and genetics approaches. The results show that conserved TOR signalling occurs, and a functional FK506-binding protein 12 kD (FKBP12) mediates the interaction between rapamycin and B. cinerea TOR (BcTOR). RNA sequencing (RNA-Seq) analysis revealed that BcTOR displayed conserved functions, particularly in controlling growth and metabolism. Furthermore, pathogenicity assay showed that BcTOR inhibition efficiently reduces the infection of B. cinerea in plant leaves of Arabidopsis and potato or tomato fruits. Additionally, transgenic plants expressing double-stranded RNA of BcTOR through the host-induced gene silencing method could produce abundant small RNAs targeting BcTOR, and significantly block the occurrence of grey mould in potato and tomato. Taken together, our results suggest that BcTOR is an efficient target for genetic engineering in control of grey mould, and also a potential and promising target applied in the biocontrol of plant fungal pathogens.  相似文献   

13.
The efficacy of Pichia guilliermondii strain M8 against Botrytis cinerea on apples was evaluated under storage conditions, and its possible modes of action were investigated both in vitro and in vivo experiments. After storage at 1 °C for 120 days, M8 reduced grey mold incidence from 45.3% (control) to 20.0%. In apple juice medium (AJM) and in wound-inoculated apples, M8 at 109 and 108 cells ml−1 inhibited the spore germination of B. cinerea and the grey mold development. When co-culturing B. cinerea in vitro or in vivo in the presence of the yeast, neither inactivated cells nor culture filtrate of the yeast had any effect on spore germination or germ tube elongation. In AJM, the spore germination was significantly recovered by the addition of 1% glucose, sucrose and fructose, or 0.5% and 1% of (NH4)2SO4, phenylalanine and asparagine. When the pathogen and the yeast were co-incubated in apple wounds with addition of the same nutrients, the inhibition of rots was significantly reduced by the supplemental nutrients. Light microscopy revealed that the yeast strongly adhered to the hyphae and spores of B. cinerea. M8 produced hydrolytic enzymes, including β-1,3-glucanase and chitinases in minimal salt media with different carbon sources. Pretreatment with M8 at 108 cells ml−1 followed by washing, significantly reduced grey mold lesions, suggesting an induction of defense responses. Direct attachment, competition for nitrogen and carbon sources, secretion of hydrolytic enzymes and induction of host resistance play a role in the biocontrol mechanism of P. guilliermondii M8 against B. cinerea.  相似文献   

14.
Tomato is one of the leading crops in Tunisia in terms of weight consumed (20 kg/per person/year). Preserving the quality of the fruit from field to consumer is essential to successful marketing. Grey mould rot induced by Botrytis cinerea is an important cause of postharvest loss depending on season and handling practices. We describe here the ability of halotolerant to moderately halophilic bacteria isolated from different Tunisian Sebkhas (hypersaline soils) to protect fresh‐market tomato fruits from B. cinerea. The tomatoes tested were at two different stages of ripening, (i) mature‐green and (ii) red. Six strains significantly reduced growth of the pathogens from 67% to 87%. The effectiveness of these antagonists was also confirmed on green tomatoes; in which the fruit rot protection rate ranged from 74% to 100%. The antagonists were characterized by morphological, biochemical and physiological tests as well as 16S rDNA sequencing. The halotolerant effective isolates were identified as belonging to one of the species Bacillus subtilis (M1‐20, J9) or B. licheniformis (J24). One effective moderately halophilic isolate (M2‐26) was identified as Planococcus rifietoensis. These strains are a source of hydrolytic enzymes such as chitinases, proteases, laminarinases, amylases, lipases and cellulases. For comparison, 12 halotolerant or moderately halophilic strains obtained from DSM culture collection were also evaluated for their antifungal activity against B. cinerea on tomato fruits. The most effective strains were Halomonas subglaciescola, Halobacillus litoralis, Marinococcus halophilus, Salinococcus roseus, Halovibrio variabilis and Halobacillus halophilus with a percentage of grey mould rot reduction ranging from 71% to 97%. Inoculation of mature‐green tomatoes by the bacterial antagonist of Halobacillus trueperi resulted in no disease development. Our results indicate that the use of halotolerant to halophilic micro‐organisms should be helpful in reducing grey mould disease of stored tomatoes.  相似文献   

15.
Raspberry flowers were inoculated in the glasshouse and field with dry conidia of Botrytis cinerea and the fruits derived from them subjected to post-harvest rot tests at c. 20°C and high humidity. Apparently healthy fully-ripe picked fruits derived from inoculated flowers developed grey mould faster than those from non-inoculated flowers in all tests. In the glasshouse experiments, fruits from inoculated tightly closed flower buds rotted more slowly than those from inoculated open flowers or those at later developmental stages. Fruits from inoculated whole flowers rotted more rapidly than those from emasculated flowers; the addition of pollen to emasculated flowers had little effect on post-harvest grey mould. In the dry summer of 1984 no fruits in the field from inoculated whole flowers rotted before ripening, but in the wet season of 1985 pre-harvest grey mould was common and the surviving healthy fruits rotted in c. 1 day after picking. Only minor differences were detected in host susceptibility to post-harvest grey mould in both glasshouse and field tests, the ranking of genotypes varied depending on whether or not flowers had been inoculated. The susceptibility of pistils of 40 Rubus genotypes to infection was examined 7 and 28 days after inoculation of stigmas with dry conidia. Conidia germinated on the stigmas and produced hyphae which grew through transmitting tissues of the styles to infect carpels symptomlessly in 17 red raspberries, one blackberry, two Rubus spp. and one hybrid. No germination occurred on stigmas of cv. Carnival and New York Selection 817.  相似文献   

16.
Grey mould, caused by Botrytis cinerea Pers ex Fr., is one of the most common diseases of tomato worldwide. Fludioxonil belongs to the phenylpyrrole fungicides, which have high activity against B. cinerea. The sensitivity of fludioxonil was evaluated on the basis of the level of inhibition of mycelium growth in 274 B. cinerea isolates collected from different locations (untreated with this fungicide) in Henan Province, China. The EC50 values for fludioxonil ranged from 0.0033 to 0.0415 mg/l, and the average EC50 values were 0.0156 ± 0.0078 mg/l. Three fludioxonil‐resistant mutants were obtained by subculturing fludioxonil‐sensitive wild‐type isolates on continuously increasing fludioxonil concentrations. For the cross‐resistance assay, fludioxonil revealed positive cross‐resistance with procymidone but did not reveal cross‐resistance with pyrimethanil, boscalid and trifloxystrobin. Mycelial growth, conidial production, hyphal dry weight and pathogenicity were diminished significantly between the fludioxonil‐resistant mutants and their sensitive wild‐type parental isolates. This study shows for the first time that fludioxonil‐resistant isolates of B. cinerea are still not present in Henan Province because this fungicide is an attractive and effective fungicide for chemical control. Recommendations can be made to growers to use fludioxonil to control grey mould and to consider the potential moderate resistance risk of using this fungicide.  相似文献   

17.
Botrytis cinerea, the causal agent of grey mould in a broad range of crops, is considered a high‐risk plant pathogen for fungicide resistance development. The use of fungicide mixtures, particularly combinations with synergistic activity, can be a useful tactic to counteract resistance build‐up in pathogen populations. The present study aimed to investigate the effects of different ratios of two‐way mixtures of carbendazim, iprodione, kresoxim‐methyl, tebuconazole and penconazole on four B. cinerea isolates that were sensitive or resistant to benzimidazoles, dicarboximides and strobilurins. The isolates that were resistant to benzimidazoles and strobilurins had E198A and G143A mutations in β‐tubulin and cytochrome b genes, respectively. The mixtures had different effects on each of the isolates in vitro but, in 13 combinations, the synergistic effect was observed against all or three isolates. In greenhouse experiments, 11 fungicide combinations used in decreased (EC75) concentrations showed the maximum control efficiency. The two follow‐up greenhouse experiments using six selected combinations revealed they were highly effective against additional isolates with various fungicide resistance profiles. The identified mixtures‐ratios have potential for use in grey mould management programs in the greenhouse.  相似文献   

18.
Grey mould, caused by the fungal pathogen Botrytis cinerea, is one of the most devastating tomato diseases, and the control of this disease is mainly by the application of chemicals. In this study, 512 isolates of B. cinerea were collected from tomato grown in greenhouses at 10 locations in 10 cities of Hebei Province from 2011 to 2016 and tested for their sensitivities to carbendazim (Car), diethofencarb (Die), iprodione (Ipr) and pyrimethanil (Pyr). Of these tested isolates, 95.7%, 95.2%, 31.6% and 89.4% were resistant to Car, Die, Ipr and Pyr, respectively. There were nine fungicide‐resistant phenotypes in the tested isolates. CarRPyrRDieRIPRS and CarRPyrRDieRIPRR were the most common phenotypes, accounting for 59.6%, and 31.1% of the tested isolates, respectively. The field trials showed that the control efficacies (CE) of carbendazim + diethofencarb (WP, 25% + 25%), pyrimethanil (EC, 40%) and iprodione (WP, 50%) at the recommended doses were 22.75%–29.23%, 58.44%–64.19% and 61.02%–65.17%, respectively, significantly lower than those of boscalid (WG, 50%) and pyrisoxazole (EC, 25%). The resistance management trial conducted from 2015 to 2017 indicated that the CE of tomato grey mould in the experimental fields was higher than 90% and the sensitivity to carbendazim, diethofencarb and pyrimethanil of B. cinerea isolates from the experimental fields increased on a yearly basis. These results showed that the frequency of resistance to Car, Die, Ipr and Pyr was high, and these four fungicides could not effectively control tomato grey mould. Tomato grey mould could be controlled by using biopesticides and newly synthesized fungicides with different modes of action. Our findings would be useful in designing and implementing fungicide resistance management spray programmes for the control of tomato grey mould.  相似文献   

19.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   

20.
Grey mould, caused by the fungus Botrytis cinerea Pers ex Fr., is a very destructive and important disease worldwide. Fluazinam is a phenylpyridinamine fungicide with broad‐spectrum activities. The baseline sensitivity of B. cinerea to fluazinam is yet to be established in Henan Province, China. In this study, a total of 117 field isolates of B. cinerea were collected from 49 commercial greenhouses in different locations of Henan Province, in 2016, and the sensitivities of these isolates to fluazinam were determined based on mycelial growth. The effective concentration for 50% (EC50) values ranged from 0.0038 to 0.0441 μg/ml, and the mean EC50 value was 0.0201 ± 0.0081 μg/ml for mycelial growth. The frequency distribution range presented a unimodal curve. To define the cross‐resistance relationships, the linear correlation coefficients of the EC50 values between fluazinam and carbendazim, procymidone, pyrimethanil or boscalid were analysed. The results showed that no correlation was observed between fluazinam and the other tested fungicides. These results provide important information to growers for the prevention and control of grey mould.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号