首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1. Adenylate cyclase activity and patterns of insulin release in response to various concentrations of glucose were determined in islets of Langerhans isolated from starving, fed, or glucose-loaded rats. 2. Basal and glucagon-stimulated activities of adenylate cyclase were lower in islets from starved than from fed rats. The minimum glucose concentration required for stimulation of insulin secretion was higher, whereas the maximum secretory response to glucose was lower, in islets from starved than from fed rats. 3. Adenylate cyclase activity in islets of Langerhans obtained from fed rats loaded with glucose by intermittent intravenous or intraperitoneal injections over 5h was significantly higher than that seen in islets from normal fed rats. Islets obtained from glucose-loaded rats required a lower glucose concentration for stimulation of insulin secretion and attained a higher maximal response to glucose stimulation than those derived from fed rats. 4. Incubation in vitro of islets isolated from normal fed rats, for periods of 1 to 24h in the presence of high concentrations of glucose resulted in an activation of adenylate cyclase that occurred progressively from 2 to 7h and which was maintained during 24h of incubation. The increase of adenylate cyclase activity in isolated islets incubated for 4h in the presence of glucose was not prevented by addition of cycloheximide or actinomycin D. Galactose or 2-deoxyglucose was ineffective in increasing adenylate cyclase activity, and pyruvate (20mm) was less effective than glucose. 5. It is suggested that glucose or a glucose metabolite may exert long-term effects on islet cell adenylate cyclase.  相似文献   

2.
1. When pancreatic islets are preincubated for 20h in the presence of glucose (83.3mM) and thereafter transferred to a glucose-free medium, theophylline (1.4mM) provokes a dramatic stimulation of insulin release. This phenomenon does not occur when the islets are preincubated for either 20h at low glucose concentration (5.6mM) or only 30 min at the high glucose concentration (83.3mM). 2. The insulinotropic action of theophylline cannot be attributed to contamination of the islets with exogenous glucose and is not suppressed by mannoheptulose. 3. The secretory response to theophylline is an immediate phenomenon, but disappears after 60min of exposure to the drug. 4. The release of insulin evoked by theophylline is abolished in calcium-depleted media containing EGTA. Theophylline enhances the net uptake of 45Ca by the islets. 5. Glycogen accumulates in the islets during the preincubation period, as judged by both ultrastructural and biochemical criteria. Theophylline significantly increases the rate of glycogenolysis during the final incubation in the glucose-free medium. 6. The theophylline-induced increase in glycogenolysis coincides with a higher rate of both lactate output and oxidation of endogenous 14C-labelled substrates. 7. These data suggest that stimulation of glycolysis from endogenous stores of glycogen is sufficient to provoke insulin release even in glucose-deprived islets, as if the binding of extracellular glucose to hypothetical plasma-membrane glucoreceptors is not an essential feature of the stimulus-secretion coupling process.  相似文献   

3.
Glucose regulates glucokinase activity in cultured islets from rat pancreas   总被引:6,自引:0,他引:6  
In this study, we have used isolated pancreatic islets cultured for 7 days in 3 or 30 mM glucose to explore whether glucokinase is induced or activated by high glucose concentrations and has related enzyme activity to glucose-stimulated insulin release. Islets cultured in low glucose medium or low glucose medium plus 350 ng/ml insulin did not respond to high glucose stimulation. Islets cultured in medium containing high glucose concentrations showed a high rate of basal insulin secretion when perifused with 5 mM glucose, and the insulin release was greatly augmented in a biphasic secretion profile when the glucose concentration was raised to 16 mM. Islet glucokinase and hexokinase activities were determined by a sensitive and specific fluorometric method. Glucokinase activity was reduced to approximately 50% in islets cultured in low glucose medium with or without insulin present compared to results with fresh islets. However, islets cultured in 30 mM glucose showed that glucokinase activity was elevated to 236% compared to results with fresh islets. It is concluded that (a) glucose is the physiological regulator of glucokinase in the islet of Langerhans and that (b) the activity of glucokinase plays a crucial role in glucose-induced insulin secretion.  相似文献   

4.
The incorporation of glucose into glycogen was determined in pancreatic islets isolated from normal rats and incubated with glucose (5 or 20 mM) and compounds known to affect glycogen metabolism in other tissues. Incubation of pancreatic islets with glucose (20 mM) induced a marked increase in radioactive glycogen. Exposure to epinephrine in the presence of glucose (20 mM) slightly increased incorporation of glucose into glycogen. In contrast the incorporation of glucose into glycogen was not affected when isolated islets were exposed to glucagon or insulin, whereas anti-insulin serum in the incubation medium decreased radioactive glycogen formation.  相似文献   

5.
1. The concentrations of cyclic AMP were compared in islets of Langerhans isolated from the pancreases of normal female and pregnant rats and were higher in islets in pregnancy. 2. There was also a significant increase in adenylate cyclase activity in homogenates of islets from pregnant rats compared with those from normal rats. 3. Increased cyclic AMP concentration in islets from pregnant rats was reflected in increased protein kinase activity. When the cyclic AMP-dependent protein kinase activity was increased by 3-isobutyl-1-methylxanthine this stimulated activity was significantly greater in pregnancy. 4. Insulin-secretion studies with islets from normal and pregnant rats showed that theophylline or 3-isobutyl-1-methylxanthine, which raise intracellular cyclic AMP concentrations, caused a significantly greater insulin secretion in pregnancy. 5. It was also found that in the presence of a glucose concentration too low to stimulate insulin secretion, the latter could be induced if the cyclic AMP concentrations were raised sufficiently with 3-isobutyl-1-methylxanthine. 6. It is suggested that the higher cyclic AMP concentrations observed in islets in pregnancy mediate the greater insulin-secretory capacity, as well as the greater sensitivity of these islets to low glucose concentrations.  相似文献   

6.
The effect of porcine vasoactive intestinal polypeptide (VIP) on development of the biphasic insulin release response in cultured fetal rat islets was investigated. Fetal islets, 21.5 days gestational age, were cultured for 7 days in RPMI 1640 culture medium containing either 2.8 or 11.1 mM glucose adn subsequently challenged with 16.7 mM glucose in a perfusion system. Islets were exposed to VIP at a final concentration of 13.2 nM by adding the peptide to the perifusion buffer (acute exposure) or by adding it to the culture medium throughout the culture period (chronic exposure). Islet hormone and DNA contents were also quantitated at the end of the culture period. Acute exposure to VIP resulted in no alterations of the insulin release pattern after culture in the presence of either glucose concentration. However, chronic treatment of islets with 13.2 nM VIP in the presence of 2.8 mM glucose resulted in significant increases in the maximum rate of insulin release during the first phase and the total amount of insulin release during both phases. Similarly, islets cultured in the presence of 11.1 mM glucose and 13.2 nM VIP demonstrated enhanced biphasic insulin release patterns with increased maximum rate and total amount of release during both phases. The presence of VIP and 2.8 mM glucose increased islet glucagon and somatostatin contents, but islet DNA and insulin contents remained unchanged. These findings indicate that VIP plays a significant role in the in vitro development of the biphasic insulin release pattern and may be a factor controlling the maturation of the fetal islet in vivo.  相似文献   

7.
The levels of glycogen and cyclic AMP, incorporation of glucose into glycogen and activities of glycogen synthetase and phosphorylase were determined in pancreatic islets isolated from genetically obese mice and their lean litter-mates. Islets from obese mice had elevated glycogen levels, increased phosphorylase activity and an increased amount of glycogen synthetase in the physiologically more effective I-form, indicating an increased turnover of glycogen. There was no significant difference in cyclic AMP levels between islets of lean and obese mice, but inhibition of phosphodiesterase or stimulation of adenyl cyclase increased cyclic AMP levels more in obese than in lean mouse islets, indicating a more rapid turnover of cyclic AMP in the former. It is suggested that cyclic AMP stimulated phosphorolytic breakdown of glycogen may be one of the mechanisms responsible for the increased insulin secretory response to glucose observed in islets from genetically obese mice.  相似文献   

8.
Summary The relation between qualitative and quantitative glucose-dependent alterations of lysosomes in pancreatic islets and the function of the islets was studied. Isolated islets of the mouse were maintained in tissue culture for one week in either 28, 5.5 or 3.3 mmol/l glucose. Insulin biosynthesis, insulin secretion and insulin content of the cultured islets were determined. After culture, the islets were subjected to acid phosphatase cytochemistry and examined by electron microscopy and ultrastructural morphometry. Islets cultured in 28 mmol/l glucose both produced and secreted insulin rapidly. Such islets seemed, however, unable to maintain more than small amounts of granule-stored insulin. Islets cultured at the lower concentrations of glucose displayed a reduced insulin secretion, which apparently resulted in considerable amounts of intracellularly stored insulin. In all cultured islets different types of lysosomes, identified by their acid phosphatase reactivity, could be seen. Dense bodies, i.e., lysosomes characterized by a homogeneous, very fine, particulate content of high density, seemed to predominate at all concentrations of glucose. It is suggested that, in the islets, the dense bodies correspond morphologically to primary lysosomes. Other types of lysosomes with inclusions of various kinds, which were frequent at the two lower concentrations of glucose, may correspond to secondary lysosomes. Morphometry revealed differences between the size distributions of lysosomes in the three experimental groups. Thus, the average lysosomal size was inversely proportional to the concentration of glucose in the culture medium. However, the numerical density of lysosomes was greatest at the highest glucose concentration. The observation of secondary lysosomes, containing material resembling secretory granules, suggests that the increased size and lowered number of lysosomes in islets cultured at low glucose concentrations may depend on a crinophagic process. Such a process, together with insulin biosynthesis and insulin secretion, may be of physiological importance for control of the secretory granule content within the pancreatic B-cell.  相似文献   

9.
Human fetal pancreatic islets were isolated from 16- to 20-week-old fetuses by a collagenase technique and cultured 48 hr in RPMI 1640 containing 10% human adult serum and unlabeled 0 to 5 micrograms cyclosporine A (CsA)/ml. Insulin secretory capacity of human fetal islets was expressed as a fractional stimulatory ratio FSR = F2/F1 of the fractional secretion rates during two successive 1 hr static incubations first with 2 mM glucose (F1) to stabilize secretion followed by maximal stimulus, i.e., 25 mM glucose plus 10 mM L-leucine and 10 mM L-arginine (F2). Unlabeled CsA at the above concentrations had no significant effects on the insulin secretory capacity expressed by FSR-values. Studies of net uptake of 3H-CsA by islets cultured for varying periods up to 40 hr and expressed as picomole 3H-CsA per picomole islet insulin content demonstrated that uptake rate was slow and did not reach isotopic equilibrium over the 40 hr of culture. When isolated fetal islets were cultured for 48 hr in the presence of 3H-CsA and varying concentrations of unlabeled CsA it was found during two successive 1 hr static incubations that fetal islets secrete insulin concomitantly with 3H-CsA following maximal stimulus for secretion. An optimal secretory molar ratio of 3H-CsA to insulin of 4.0 +/- 1.3 (n = 7) was found after islets were cultured 48 hr in the presence of a saturating 2.128 micrograms 3H-CsA per milliliter culture medium. In three successive 30-min static incubations of 3H-CsA loaded islets, first with low glucose, followed by high glucose plus L-arginine and L-leucine, and finally with high glucose plus L-arginine and L-leucine and 10 mM theophylline, the proportional fractional secretion rates of insulin and 3H-CsA were of the same magnitude. It is concluded that human fetal pancreatic islets during 48 hr of culture in the presence of pharmacologically relevant concentrations of CsA can internalize the drug, which is compartmentalized and concomitantly secreted with insulin following maximal stimuli. Transplanted human fetal islets utilized as delivering units for CsA could be beneficial for the induction of immunotolerance to allografted fetal islets.  相似文献   

10.
Defects in the deposition of glycogen and the regulation of glycogen synthesis in the livers of severely insulin-deficient rats can be reversed, in vivo, within hours of insulin administration. Using primary cultures of hepatocytes isolated from normal and diabetic rats in a serum-free chemically defined medium, the present study addresses the chronic action of insulin to facilitate the direct effects of insulin and glucose on the short term regulation of the enzymes controlling glycogen metabolism. Primary cultures were maintained in the presence of insulin, triiodothyronine, and cortisol for 1-3 days. On day 1 in alloxan diabetic cultures, 10(-7) M insulin did not acutely activate glycogen synthase over a period of 15 min or 1 h, whereas insulin acutely activated synthase in cultures of normal hepatocytes. By day 3 in hepatocytes isolated from alloxan diabetic rats, insulin effected an approximate 30% increase in per cent synthase I within 15 min as was also the case for normal cells. The acute effect of insulin on synthase activation was independent of changes in phosphorylase alpha. Whereas glycogen synthase phosphatase activity could not be shown to be acutely affected by insulin, the total activity in diabetic cells was restored to normal control values over the 3-day culture period. The acute effect of 30 mM glucose to activate glycogen synthase in cultured hepatocytes from normal rats after 1 day of culture was missing in hepatocytes isolated from either alloxan or spontaneously diabetic (BB/W) rats. After 3 days in culture, glucose produced a 50% increase in glycogen synthase activity during a 10-min period under the same conditions. These studies clearly demonstrate that insulin acts in a chronic manner in concert with thyroid hormones and steroids to facilitate acute regulation of hepatic glycogen synthesis by both insulin and glucose.  相似文献   

11.
A possible role for cyclic adenosine-3'-5'-monophosphate (cAMP) in islet cell replication was examined in collagenase-isolated pancreatic islets from Wistar rats of different age and different metabolic state (non-pregnant, pregnant, days 15.5-17.5). Islets obtained from pregnant rats released significantly more insulin in response to 10 mmol/l glucose (culture for 24 h) and their DNA synthesis (incorporation of [3H]thymidine into islet DNA) was doubled compared to islets from non-pregnant controls. Islets obtained from 4-6 days old rats showed a maximal stimulation of DNA synthesis after exposure to 0.1 mmol/l IBMX (3-isobutyl-1-methylxanthine) whereas the cAMP accumulation and the insulin biosynthesis measured in a subsequent short-term incubation were dose-dependent stimulated up to 1.0 mmol/l IBMX. In islets of 12 days old rats or 3 months old rats, however, IBMX did not stimulate DNA synthesis or insulin release measured during culture, although the cAMP content per islet was significantly enhanced after culture in the presence of IBMX.  相似文献   

12.
1. Insulin biosynthesis in isolated rat islets of Langerhans was determined by the incorporation of [(3)H]leucine into newly synthesized islet proteins. Anti-insulin serum covalently coupled to a solid phase (CNBr-activated Sepharose 4B) was used to separate the immunoreactive proinsulin and insulin from other islet proteins. This method was applied to a study of the regulation of insulin biosynthesis in isolated rat islets of Langerhans during pregnancy, and immediately after a period of food deprivation. 2. Islets isolated from pregnant rats showed an increased basal rate of synthesis compared with the non-pregnant controls. In addition, they showed a significant increase in biosynthesis of proinsulin and insulin in comparison with the normal islets over a range of glucose concentrations of 2-20mm. 3. Addition of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine significantly increased the insulin-synthetic response of normal islets over the glucose range 5-20mm, so that their glucose response approached that of islets from pregnant rats. 4. Normal female rates were injected with a long-acting progesterone derivative (hydroxyprogesterone hexanoate), to investigate the role of progesterone on the increased insulin biosynthesis observed in islets in pregnancy. There appeared to be no marked difference in insulin biosynthesis between the islets from the progesterone-injected and control rats in the presence of 2mm- or 6mm-glucose alone. However, in the presence of 4mm- or 6mm-glucose and 3-isobutyl-1-methylxanthine there was a significant increase in insulin biosynthesis in the progesterone-treated animals. 5. Total islet protein biosynthesis was determined by the incorporation of [(3)H]leucine into trichloroacetic acid-precipitable islet proteins. Islets isolated from normal rats showed a 1.6-fold increase in incorporation over the glucose concentration range 2-20mm, and this value remained unchanged during starvation; however, rates of incorporation were significantly raised in islets isolated from pregnant rats in the presence of 20mm-glucose. 6. Islets from starved and fed control rats were incubated in the presence of increasing concentrations of glucose or glucose+3-isobutyl-1-methylxanthine. The islets isolated from the starved animals showed a diminished insulin-synthetic response to glucose as compared with the controls; this response was partially restored to normal values by elevation of cyclic AMP concentrations by using 3-isobutyl-1-methylxanthine. 7. It is suggested that the alterations in glucose-stimulated insulin biosynthesis observed in islets during pregnancy and after a period of starvation could be attributable, at least in part, to a long-term alteration of the cyclic AMP system, and in pregnancy to a direct or indirect effect of progesterone on beta-cell function.  相似文献   

13.
The insulin secretory responses of rat islets to glucose (15 mM), 12-O-tetradecanoylphorbol13-acetate (TPA; 500 nM), and potassium (30 mM) were determined fromperifused islets cultured for 22-24 h in CMRL-1066 medium (controlcultured) or islets cultured in the additional presence of 500 nM TPA.Islet content of protein kinase C  (PKC) and serine and threoninephosphoprotein patterns were also monitored after the culture period.Compared with freshly isolated islets, culturing alone had no adverseeffect on the capacity of TPA or 30 mM potassium to stimulate secretionor on the islet content of PKC. In agreement with previous studies, culturing in TPA reduced the islet content of immunoreactive PKC by>95% and abolished the capacity of the phorbol ester to stimulate secretion during a subsequent dynamic perifusion. Culturing in TPAslightly improved the insulin secretory response to 15 mM glucosecompared with control-cultured islets; however, sustained rates of 15 mM glucose-induced secretion from these islets were significantly lessthan the responses of freshly isolated islets. Islets cultured in TPAresponded to 30 mM potassium with a markedly amplified insulinsecretory response that was abolished by nitrendipine. Enhancedphosphorylation of several islet proteins was also observed inTPA-cultured islets compared with control-cultured islets. Thesefindings demonstrate that culturing alone impairs glucose-induced secretion, a response that is improved but still subnormal compared with freshly isolated islet responses, if TPA is included in the culture medium. Sustained phosphorylation of several islet proteins inTPA-cultured islets may account, at least in part, for augmented calcium-dependent secretion.

  相似文献   

14.
The effects of glucose, a series of glucose metabolites, nicotinamide nucleotides, Ca2+ and p-chloromercuribenzenesulphonate on adenylate cyclase activity in homogenates of mouse pancreatic islets were studied. The basal activity of the adenylate cyclase was approx. 6 pmol of cyclic AMP formed/30 min per microng of DNA at 30 degrees C. The enzyme activity was stimulated by some 150% by fluoride. Starvation of the animals for 48h had no effect on either the basal or the fluoride-stimulated activity. The adenylate cyclase activity was increased by 40-50% when 17 mM-glucose, 10 micronM-phosphoenolpyruvate or 10 micronM-pyruvate was added to the assay medium. The effect of glucose was unchanged in the presence of 17 mM-mannoheptulose, and mannoheptulose alone had no effect. The other glycolytic intermediates, and the coenzymes NAD+, NADH and NADPH, at concentrations up to 1 mM were without any detectable effect on the rate of formation of cyclic AMP. The insulin secretagogue p-chloromercuribenzenesulphonate inhibited the adenylate cyclase markedly even at a concentration of 10 micronM. Calculated concentrations of free Ca2+ of 10 micronM and 0.1 mM inhibited adenylate cyclase by 29 and 71% respectively. It is concluded that both glucose itself and phosphoenolpyruvate and/or pyruvate are true activating ligands for islet and adenylate cyclase and that inhibition of the cyclase by Ca2+ may be of physiological significance.  相似文献   

15.
S Sandler  A Andersson 《Cryobiology》1987,24(4):285-291
It was the aim of this study to investigate the influence of the glucose concentration of the post-thaw culture medium on islet B-cell survival after cryopreservation by the combined assessments of islet recovery, islet DNA and insulin contents, and insulin release. Collagenase isolated mouse islets were kept in culture for 3 days in the presence of 11.1 mM glucose and then transferred to freezing ampoules containing Hanks' solution supplemented with 10% calf serum and 2 M dimethyl sulfoxide. After a 20-min incubation at 0 degrees C the islets were cooled at a rate of 25 degrees C/min to -70 degrees C and subsequently plunged into liquid nitrogen. After 2 hr the frozen islets were rapidly thawed at 37 degrees C, transferred to culture dishes, and cultured for another 3 days in the presence of 2.8, 5.6, 11.1, 16.7, or 28 mM glucose. Nonfrozen control islets were treated identically after a preceding 3-day culture at 11.1 mM glucose. The percentage recovery of cryopreserved islets was decreased compared to that of nonfrozen islets, but was increased when higher glucose concentrations were used in the post-thaw culture medium. Since the DNA content of the cryopreserved islets was slightly decreased, the overall survival rate of the cryopreserved B-cells, when cultured at the higher glucose concentrations after thawing, was found to be about 75%. The insulin content of the cryopreserved islets was decreased but the glucose-stimulated insulin release was essentially the same as that of the nonfrozen islets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Monolayer islet cells prepared from neonatal rat pancreases were cultured in media with 5.5 mM glucose alone or further supplemented with 5 mM 3-amino-3-deoxyglucose (3A3dG) for a total of 7 days. After culture for 7 days, 3A3dG-supplementation maintained the recovery of insulin released into the medium during the last 2 days of a 7-day culture at a level 2.9 fold higher that at day 0. Similarly, the insulin content of the cells was significantly higher than the initial level at day 0 (2.8-fold) and that of the cells grown in medium with glucose alone (4.5-fold). The maximum secretory responses to glucose (2.8-16.7 mM), leucine (2.5-10 mM) and 2-ketoisocaproate (2.5-10 mM) were several times as high as the initial. Further, 3A3dG caused a selective deletion of fibroblasts mostly consisting of endocrine cells. In these monolayer cells, either the cAMP response to glucose or the cellular cAMP content were significant. In conclusion, it is suggested that the beneficial effect of 3A3dG may be associated with an increase in either the oxidative catabolism of amino acids or the activity of adenylate cyclase in the B cell.  相似文献   

17.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

18.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

19.
AXEN, KATHLEEN V., XUE LI, AND ANTHONY SCLAFANI. Miglitol (BAY m 1099) treatment of diabetic hypothalamic-dietary obese rats improves islet response to glucose. Obes Res. 1999;7:83–89. Objective : The well-absorbed α-glucosidase inhibitor, miglitol (BAY m 1099), was included in the diets of hypothalamic-dietary obese diabetic rats to investigate its ability to improve glycemia and thereby reverse glucotoxic effects on islet secretory response. Research Methods and Procedures : Female rats received bilateral electrolytic lesions of the ventromedial hypothalamus and were fed high-fat, sucrosesupplemented diets until hyperinsulinemia and hyperglycemia were observed after 3 hours of food deprivation (nonfed). Diabetic animals were assigned to miglitol-treated (40 mg/17 g of diet) or untreated groups for 3 weeks; pancreatic islets were isolated for incubation experiments. Results : No differences in food intake, body weights, or nonfed plasma glucose or insulin levels were seen between treated and untreated diabetic rats. Islets isolated from untreated diabetic rats showed elevated basal insulin release and no insulin secretory response to an elevation in glucose concentration. In contrast, islets obtained from miglitol-treated rats showed more normal basal release and a significant insulin secretory response to glucose. Incubation of islets, obtained from normal control rats or untreated diabetic rats, in media containing miglitol at levels estimated to exist in plasma of treated rats had no effect on islet insulin secretory responses to glucose. Discussion : Islet secretory response was improved despite continued hyperglycemia and severe insulin resistance. Miglitol treatment may improve islet sensitivity to glucose either through effects on islet metabolism requiring prolonged exposure or by improvement in postmeal glycemia, despite persistent hyperglycemia.  相似文献   

20.
This study was undertaken to investigate the long-term effects of different substrates, in particular glucose, on the regulation of islet RNA metabolism and the relationship of this regulation to the metabolism and insulin production of the islet B-cell. For this purpose collagenase-isolated mouse islets were used either in the fresh state or after culture for 2 or 5 days in RPMI 1640 plus 10% calf serum supplemented with various test compounds. Islets cultured with 16.7 mM glucose contained more RNA than those cultured with 3.3 mM glucose. Culture of islets in glucose at low concentrations inhibited glucose-stimulated RNA synthesis and this inhibitory effect was reversed by prolonged exposure to high glucose concentrations. Culture with 10 mM leucine and 3.3 mM glucose or with 10 mM 2-ketoisocaproate and 3.3 mM glucose increased the total RNA content of islets as compared to that of islets cultured with 3.3 mM glucose alone. Islets cultured with 5 mM theophylline maintained a high RNA content in the presence of 3.3 mM glucose. Theophylline also increased the islet RNA content when added together with 16.7 mM glucose, as compared to 16.7 mM glucose alone. Theophylline probably exerted this effect by decreasing the rate of RNA degradation. Changes in islet RNA metabolism showed a close correlation to changes in islet total protein biosynthesis, whereas islet (pro)insulin biosynthesis and insulin release exhibited different glucose-dependency patterns. The response of islet oxygen uptake to glucose was similar to that of islet RNA and protein biosynthesis. It is concluded that the RNA content of the pancreatic islets is controlled at the levels of both synthesis and degradation. Glucose stimulates the RNA synthesis and inhibits its degradation. Moreover, the results suggest that regulation of RNA synthesis may be mediated through islet metabolic fluxes and the cAMP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号