首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust method has been developed that allows analysis of both N- and O-linked oligosaccharides released from glycoproteins separated using 2D-PAGE and then electroblotted to PVDF membrane. This analysis provides efficient oligosaccharide profiling applicable to glycoproteomic analysis. The method involves the enzymatic release of N-linked oligosaccharides using PNGase F followed by the chemical release of O-linked oligosaccharides using reductive beta-elimination and analysis using LC-ESI-MS. Oligosaccharides from the major plasma glycoproteins with a pI between 4 and 7 were characterized from the glycoforms of haptoglobin, alpha2-HS-glycoprotein, serotransferrin, alpha1-antitrypsin, and alpha1-antichymotrypsin. It was shown that the separation of protein glycoforms evident in 2D-PAGE is partially due to the combined sialylation of the O-linked and N-linked oligosaccharides. Bi-, tri- and tetra-antennary N-linked structures, which had differing levels of sialylation and fucosylation, were found to be present on the glycoproteins analyzed, together with O-linked oligosaccharides such as mono-, and disialylated T-antigen and a disialylated core type 2 hexasaccharide. In addition, N-linked site-specific information was obtained by MALDI-MS analysis using tryptic digestion after PNGase F release of the oligosaccharides.  相似文献   

2.
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate–peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI–MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.  相似文献   

3.
Glycoproteins make up a major and important part of the salivary proteome and play a vital role in maintaining the health of the oral cavity. Because changes in the physiological state of a person are reflected as changes in the glycoproteome composition, mapping the salivary glycoproteome will provide insights into various processes in the body. Salivary glycoproteins were identified by the hydrazide coupling and release method. In this approach, glycoproteins were coupled onto a hydrazide resin, the proteins were then digested and formerly N-glycosylated peptides were selectively released with the enzyme PNGase F and analyzed by LC-MS/MS. Employing this method, coupled with in-solution isoelectric focusing separation as an additional means for pre-fractionation, we identified 84 formerly N-glycosylated peptides from 45 unique N-glycoproteins. Of these, 16 glycoproteins have not been reported previously in saliva. In addition, we identified 44 new sites of N-linked glycosylation on the proteins.  相似文献   

4.
Parasite antigenic fractions obtained by biochemical purification of sheep hydatid fluid were subjected to enzymatic digestion. The relative mobilities of the 5 and B antigens, before and after treatment, were analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Antigenic fractions transferred to nitrocellulose were also treated with sodium metaperiodate and concanavalin A. The results indicate that antigen 5 contains a substantial amount of carbohydrates covalently linked to a polypeptide backbone, which strongly bind to concanavalin A and is removed by N-glycosidase F (PNGase F). Antigen 5 possesses complex N-linked oligosaccharides (PNGase F sensitive), without terminal N-acetyl-D-glucosamine residues (N-acetyl-D-glucosaminidase nonsensitive) and has no high-mannose oligosaccharides (endo-beta-N-acetylglucosaminidase H nonsensitive). In contrast, the antigen B of low molecular weight is not susceptible to either enzymatic digestions (PNGase F, Endo H, and N-acetyl-D-glucosaminidase) or sodium metaperiodate oxidation and it does not bind to concanavalin A. Polyclonal antibodies prepared against the two antigens reacted with the deglycosylated antigen 5 in Western blot. The dominant epitopes are, therefore, polypeptides, although the presence of carbohydrate epitopes in the native glycoproteins cannot be excluded.  相似文献   

5.
In glycoanalysis protocols, N-glycans from glycoproteins are most frequently released with peptide- N (4)-( N-acetyl-beta-glucosaminyl)asparagine amidase F (PNGase F). As the enzyme is an amidase, it cleaves the NH-CO linkage between the Asn side chain and the Asn-bound GlcNAc residue. Usually, the enzyme has a low activity, or is not active at all, on native glycoproteins. A typical example is native bovine pancreatic ribonuclease B (RNase B) with oligomannose-type N-glycans at Asn-34. However, native RNase BS, generated by subtilisin digestion of native RNase B, which comprises amino acid residues 21-124 of RNase B, is sensitive to PNGase F digestion. The same holds for carboxymethylated RNase B (RNase B (cm)). In this study, NMR spectroscopy and molecular modeling have been used to explain the differences in PNGase F activity for native RNase B, native RNase BS, and RNase B (cm). NMR analysis combined with literature data clearly indicated that the N-glycan at Asn-34 is more mobile in RNase BS than in RNase B. MD simulations showed that the region around Asn-34 in RNase B is not very flexible, whereby the alpha-helix of the amino acid residues 1-20 has a stabilizing effect. In RNase BS, the alpha-helix formed by amino acid residues 23-32 is significantly more flexible. Using these data, the possibilities for complex formation of both RNase B and RNase BS with PNGase F were studied, and a model for the RNase BS-PNGase F complex is proposed.  相似文献   

6.
Peptide:N-glycanase (PNGase) is the enzyme responsible for de-N-glycosylation of misfolded glycoproteins in the cytosol. Here, we report the molecular identification and characterization of PNGase (png-1, F56G4.5) from Caenorhabditis elegans. This enzyme released both high mannose- and complex-type N-glycans from glycopeptides and denatured glycoproteins. Deglycosylation activity was inhibited by Zn(2+) and z-VAD-fmk, but not by EDTA. PNG-1 has a thioredoxin-like domain in addition to a transglutaminase domain, the core domain of PNGases, and exhibited protein disulphide reductase activity in vitro. Our biochemical studies revealed that PNG-1 is a unique bifunctional protein possessing two enzyme activities.  相似文献   

7.
从脑膜炎脓杆菌(Flavobacterium meningosepticum)基因组中通过PCR扩增了N-糖酰胺酶F(PNGase F)基因,经酶切后与表达载体pET28a连接,获得的重组质粒转入大肠杆菌BL21(DE3)。重组大肠杆菌经诱导表达和纯化提取后,获取大量高纯度N-糖酰胺酶F,其纯度达90%以上。试验证明,经纯化的重组N-糖酰胺酶F可以切除核糖核酸酶B、转铁蛋白和人IgG等糖蛋白上的N-糖链,具有脱糖基化作用。  相似文献   

8.
Global glycomics of human whole serum glycoproteins appears to be an innovative and comprehensive approach to identify surrogate non-invasive biomarkers for various diseases. Despite the fact that quantitative glycomics is premised on highly efficient and reproducible oligosaccharide liberation from human serum glycoproteins, it should be noted that there is no validated protocol for which deglycosylation efficiency is proven to be quantitative. To establish a standard procedure to evaluate N-glycan release from whole human serum glycoproteins by peptide-N-glycosidase F (PNGase F) treatment, we determined the efficiencies of major N-glycan liberation from serum glycoproteins in the presence of reducing agents, surfactants, protease treatment, or combinations of pretreatments prior to PNGase F digestion. We show that de-N-glycosylation efficiency differed significantly depending on the condition used, indicative of the importance of a standardized protocol for the accumulation and comparison of glycomics data. Maximal de-N-glycosylation was achieved when serum was subjected to reductive alkylation in the presence of 2-hydroxyl-3-sulfopropyl dodecanoate, a surfactant used for solubilizing proteins, or related analogues, followed by tryptic digestion prior to PNGase F treatment. An optimized de-N-glycosylation protocol permitted relative and absolute quantitation of up to 34 major N-glycans present in serum glycoproteins of normal subjects for the first time. Moreover PNGase F-catalyzed de-N-glycosylation of whole serum glycoproteins was characterized kinetically, allowing accurate simulation of PNGase F-catalyzed de-N-glycosylation required for clinical glycomics using human serum samples. The results of the current study may provide a firm basis to identify new diagnostic markers based on serum glycomics analysis.  相似文献   

9.
The purpose of the work described in this paper was to develop a new approach to the identification of glycoprotein with particular types of glycosylation. The paper demonstrates N-glycosylation sites in a glycoproteins can be identified by (1) proteolysis with trypsin, (2) lectin affinity selection, (3) enzymatic deglycosylation with peptide-N-glycosidase F (PNGase F) in buffer containing 95% H(2)(18)O, which generates deglycosylated peptide pairs separated by 2 or 4 amu, (4) reversed-phase separation of the peptide mixture and MALDI mass analysis, (5) MS-MS sequencing of the ion pairs, and (6) identification of the parent protein through a database search. This process has been tested on the selection of glycopeptides from lactoferrin and mammaglobin, and the identification of the ion pairs of fetuin glycopeptides. Glycosylation sites were identified through PNGase hydrolysis in H(2)(18)O. During the process of hydrolyzing the conjugate, Asn is converted to an aspartate residue with the incorporation of (18)O. However, PNGase F was observed to incorporate two (18)O into the beta-carboxyl groups of the Asp residue. This suggests that the hydrolysis is at least partially reversible.  相似文献   

10.
A method was developed for obtaining detailed oligosaccharide profiles from [2-3H]mannose- or [6-3H]fucose-labeled cellular glycoproteins. The oligosaccharides were segregated first according to class, using endo-beta-N-acetylglucosaminidase H (Endo H) to release the high mannose species, and then with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase (PNGase F), which provided a complete array of complex oligosaccharide chains. The high mannose and complex oligosaccharides were fractionated subsequently according to net negative charge on QAE-Sephadex. High resolution gel filtration on TSK HW-40(S) resolved the neutral high mannose population into species of the type Man9-5 N-acetylglucosamine. Desialylation of the complex chains with neuraminidase allowed resolution of these oligosaccharides into their corresponding asialo bi-, tri-, and tetraantennary species. Fibroblasts from normal and cystic fibrosis cells were analyzed for differences in their glycosylation patterns using these techniques. Over 95% of the [2-3H]mannose-labeled glycoproteins were susceptible to the combined glycosidase digestions, but no difference in either the high mannose or complex oligosaccharides were observed. Nonetheless, the methodology developed in this study provides an important new approach for investigating oligosaccharides of different cell types and variants of the same type. Metabolic changes induced in cellular glycoproteins, as illustrated by use of the processing inhibitor swainsonine, demonstrated the versatility of this procedure for investigating questions relating to glycoprotein structure and enzyme specificity. Thus, by employing a variation of this method, it was possible to confirm the location of fucose in the core of PNGase F-released hybrid oligosaccharides by the subsequent release with Endo H of the disaccharide, fucosyl-N-acetylglucosamine.  相似文献   

11.
Peptide:N-glycosidase (PNGase) F, the first PNGase identified in prokaryotic cells, catalyzes the removal of intact asparagine-linked oligosaccharide chains from glycoproteins and/or glycopeptides. Since its discovery in 1984, PNGase F has remained as the sole prokaryotic PNGase. Recently, a novel gene encoding a protein with a predicted PNGase domain was identified from a clinical isolate of Elizabethkingia meningoseptica. In this study, the candidate protein was expressed in vitro and was subjected to biochemical and structural analyses. The results revealed that it possesses PNGase activity and has substrate specificity different from that of PNGase F. The crystal structure of the protein was determined at 1.9 Å resolution. Structural comparison with PNGase F revealed a relatively larger glycan-binding groove in the catalytic domain and an additional bowl-like domain with unknown function at the N terminus of the candidate protein. These structural and functional analyses indicated that the candidate protein is a novel prokaryotic N-glycosidase. The protein has been named PNGase F-II.  相似文献   

12.
Deglycosylation of asparagine-linked glycans by peptide:N-glycosidase F   总被引:48,自引:0,他引:48  
Endo-beta-N-acetylglucosaminidase F (Endo F) and peptide:N-glycosidase F (PNGase F) were purified from cultures of Flavobacterium meningosepticum by ammonium sulfate precipitation followed by gel filtration on TSK HW-55(S). This system separated the two enzymes and provided PNGase F in a high state of purity, but the basis for the resolution appeared to be hydrophobic interaction and not molecular size. Studies using purified Endo F and PNGase F with defined glycopeptides demonstrated that Endo F was somewhat similar to Endo H in that it hydrolyzed many, but not all, high-mannose and hybrid oligosaccharides, as well as complex biantennary oligosaccharides. PNGase F, in contrast, hydrolyzed all classes of asparagine-linked glycans examined, provided both the alpha-amino and carboxyl groups of the asparagine residue were in peptide linkage. Deglycosylation studies with PNGase F revealed that many proteins in their native conformation were susceptible to this enzyme but that prior denaturation in sodium dodecyl sulfate greatly decreased the amount of enzyme required for complete carbohydrate removal.  相似文献   

13.
We report a novel approach for direct on-membrane glycoproteomics by digestion of membrane-blotted glycoproteins with multiple enzymes using piezoelectric chemical inkjet printing technology and on-membrane direct MALDI-TOF mass spectrometry. With this approach, both N-linked glycan analyses and peptide mass fingerprinting of several standard glycoproteins were successfully performed using PNGase F and trypsin microscale digestions of the blotted spots on membrane from an SDS-PAGE gel. In addition, we performed a similar analysis for 2-DE separated serum glycoproteins as a demonstration of how the system could be used in human plasma glycoproteomics.  相似文献   

14.
Faid V  Chirat F  Seta N  Foulquier F  Morelle W 《Proteomics》2007,7(11):1800-1813
Glycosylation of proteins is a very complex process which involves numerous factors such as enzymes or transporters. A defect in one of these factors in glycan biosynthetic pathways leads to dramatic disorders named congenital disorders of glycosylation (CDG). CDG can affect the biosynthesis of not only protein N-glycans but also O-glycans. The structural analysis of glycans on serum glycoproteins is essential to solving the defect. For this reason, we propose in this paper a strategy for the simultaneous characterization of both N- and O-glycan chains isolated from the serum glycoproteins. The serum (20 microL) is used for the characterization of N-glycans which are released by enzymatic digestion with PNGase F. O-glycans are chemically released by reductive elimination from whole serum glycoproteins using 10 microL of the serum. Using strategies based on mass spectrometric analysis, the structures of N- and O-glycan chains are defined. These strategies were applied on the sera from one patient with CDG type IIa, and one patient with a mild form of congenital disorder of glycosylation type II (CDG-II) that is caused by a deficiency in the Cog1 subunit of the complex.  相似文献   

15.
Application of the most sensitive fluorescent label 2-aminobenzoic acid (anthranilic acid, AA) for characterization of carbohydrates from the glycoproteins ( approximately 15 pmol) separated by polyacrylamide gel electrophoresis is described. AA label is used for the determination of both monosaccharide composition and oligosaccharide map. For the monosaccharide determination, bands containing the glycoprotein of interest are excised from the polyvinylidene fluoride (PVDF) membrane blots, hydrolyzed in 20% trifluoroacetic acid, derivatized, and analyzed by C-18 reversed-phase high-performance liquid chromatography. For the oligosaccharide mapping, bands were digested with peptide N-glycosidase F (PNGase F) in order to release the N-linked oligosaccharides, derivatized, and analyzed by normal-phase anion-exchange chromatography. For convenience, the PNGase F digestion was performed in 1:100 diluted ammonium hydroxide overnight. The oligosaccharide yield from ammonium hydroxide-PNGase F digestion was better or equal to all the other reported procedures, and the presumed "oligosaccharide-amine" product formed in the reaction mixture did not interfere with labeling of the oligosaccharides under the conditions used for derivatization. Sequencing of oligosaccharides can be performed using the same mapping method following treatment with an array of glycosidases. In addition, the mapping method is useful for determining the relative and simultaneous distribution of sialic acid and fucose.  相似文献   

16.
Asparagine-type oligosaccharides are released from core proteins as N-glycosylamines in the initial step of the action of the peptide N(4)-(N-acetyl-β-D-glucosaminyl)asparagine amidase F (PNGase F). The released N-glycosylamine-type oligosaccharides (which are exclusively present at least during the course of the enzyme reaction) could therefore be derivatized with amine-labeling reagents. Here we report a method using 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a labeling reagent for glycosylamine-type oligosaccharides. We applied the method for the sensitive analysis of some oligosaccharide mixtures derived from well-characterized glycoproteins including human transferrin, α(1)-acid glycoprotein, bovine fetuin, and ribonuclease B. NBD-labeled oligosaccharides were successfully separated on an amide-bonded column or a diol-silica column. This labeling method included the release of oligosaccharides from glycoproteins and derivatization of oligosaccharides in a one-pot reaction and was completed within 3h. The method showed approximately fivefold higher sensitivity than that involving labeling with ethyl p-aminobenzoate (ABEE) in HPLC using fluorometric detection and a one order of magnitude higher response in ESI-LC/MS. We also applied this method for the sensitive analysis of glycoprotein-derived oligosaccharides by capillary electrophoresis with laser-induced fluorometric detection (LIF-CE). The limit of detection in HPLC and LIF-CE were 100fmol and 4fmol, respectively.  相似文献   

17.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

18.
A P Hansen  S P Sheikh 《FEBS letters》1992,306(2-3):147-150
Affinity labeling using [125I-Tyr36]PYY and homobifunctional affinity crosslinking reagents of the rabbit Y2 receptor for peptide YY(PYY) results in specifically labeled proteins of both M(r) = 50,000 to 60,000 and M(r) = 96,000 to 115,000 [1,2]. In this work the glycoprotein nature of affinity labeled Y2 receptor proteins were investigated by enzymatic deglycosylation using neuraminidase, endoglycosidase F (endo F), N-glycosidase F (PNGase F), and O-glycanase treatment. Only N-glycosidase F and neuraminidase increased the electrophoretic mobility of the radiolabeled receptor bands, whereas all other glycosidases did not. PNGase F treatment of both radiolabeled receptor bands electroeluted from gel slices reduced the apparent molecular mass of by 16-17 kDa units, that is M(r) = 96,000 to 79,000 and M(r) = 60,000 to 44,000, indicating removal of N-linked oligosaccharide chains of similar size from both species. Neuraminidase treatment caused slight increases in the electrophoretic mobilities suggesting the presence of terminal sialic residues. It is concluded that the Y2 binding proteins are N-linked complex (sialo)glycoproteins with a minimal core protein size of M(r) = 44,000. Furthermore, based on this sensitivity pattern of the glycosidases, the Asn-linked carbohydrate may be of the tri- or tetra-antennary complex type containing terminal sialic acid residues.  相似文献   

19.
The N-linked glycosylation of recombinant human CD59, expressed in Chinese hamster ovary (CHO) cells with and without a membrane anchor, was compared to examine the effect of the anchor on glycan processing. N-Linked glycans were released with peptide-N-glycosidase F (PNGase F) within gel from SDS-PAGE-isolated soluble and glycosylphosphatidylinositol (GPI)-anchored human CD59 expressed in CHO cells. The anchored form contained core-fucosylated neutral and sialylated bi-, tri-, and tetraantennary glycans with up to four N-acetyllactosamine extensions. Exoglycosidase digestions and analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were used to define the relative amounts of the bi-, tri-, and tetraantennary glycans and to investigate the distribution of N-acetyllactosamine extensions between their antennae. Biantennary structures accounted for about 60% of the glycans, 30% of the triantennary structures, and about 10% of the tetraantennary structures. For tri- and tetraantennary glycans, those with extended antennae were found to be more abundant than those without extensions. The soluble form of CD59, expressed in CHO cells without the GPI anchor signal sequence, consisted almost entirely (97%) of biantennary glycans, of which 81% were unmodified, 17% contained one N-acetyllactosamine extension, and 2% contained two extensions. No compounds with longer extensions were found. A MALDI spectrum of the intact glycoprotein showed a distribution of glycans that matched those released with PNGase F. In addition, the protein was substituted with several small glycans, such as HexNAc, HexNAc-->Fuc, and HexNAc-->HexNAc, probably as the result of degradation of the mature N-linked glycans. The results show that the presence of the anchor increases the extent of glycan processing, possibly as the result of longer exposure to the glycosyltransferases or to a closer proximity of the protein to these enzymes.  相似文献   

20.
The structure elucidation of protein-linked N-glycans in plants has raised interest in the past years due to remarkable physiological roles attributed to these modifications. However, little information about the glycoprotein patterns related to plant cell differentiation, dedifferentiation and transformation is available. In this work, the use of two-dimensional polyacrylamide gel electrophoresis in conjunction with matrix assisted laser/desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) for the characterization of carbohydrates released from plant glycoproteins is described. Proteins from different Mammillaria tissues (shoot, callus, hyperhydric regenerant, and TW tumor) were separated by 2D SDS-polyacrylamide gel electrophoresis, transferred to a nitrocellulose membrane and incubated with Con A to detect N-glycosylated proteins. To discover if the same protein can have various N-glycan structures depending on the organization status of the tissue, the selected glycoprotein spot, which was common for all investigated tissues, was excised from the gels and digested by PNGase A. The released oligosaccharides were analyzed by MALDI-TOF-MS. The results obtained in this study indicate that the N-glycosylation pattern of the protein is clearly dependent on level of plant tissue organization and can be related to the specific morphogenic status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号