首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryoelectron micrographs of purified human foamy virus (HFV) and feline foamy virus (FFV) particles revealed distinct radial arrangements of Gag proteins. The capsids were surrounded by an internal Gag layer that in turn was surrounded by, and separated from, the viral membrane. The width of this layer was about 8 nm for HFV and 3.8 nm for FFV. This difference in width is assumed to reflect the different sizes of the HFV and FFV MA domains: the HFV MA domain is about 130 residues longer than that of FFV. The distances between the MA layer and the edge of the capsid were identical in different particle classes. In contrast, only particles with a distended envelope displayed an invariant, close spacing between the MA layer and the Env membrane which was absent in the majority of particles. This indicates a specific interaction between MA and Env at an unknown step of morphogenesis. This observation was supported by surface plasmon resonance studies. The purified N-terminal domain of FFV Gag specifically interacted with synthetic peptides and a defined protein domain derived from the N-terminal Env leader protein. The specificity of this interaction was demonstrated by using peptides varying in the conserved Trp residues that are known to be required for HFV budding. The interaction with Gag required residues within the novel virion-associated FFV Env leader protein of about 16.5 kDa.  相似文献   

2.
In primate cells, assembly of a single HIV-1 capsid involves multimerization of thousands of Gag polypeptides, typically at the plasma membrane. Although studies support a model in which HIV-1 assembly proceeds through complexes containing Gag and the cellular adenosine triphosphatase ABCE1 (also termed HP68 or ribonuclease L inhibitor), whether these complexes constitute true assembly intermediates remains controversial. Here we demonstrate by pulse labeling in primate cells that a population of Gag associates with endogenous ABCE1 within minutes of translation. In the next approximately 2 h, Gag-ABCE1 complexes increase in size to approximately that of immature capsids. Dissociation of ABCE1 from Gag correlates closely with Gag processing during virion maturation and occurs much less efficiently when the HIV-1 protease is inactivated. Finally, quantitative double-label immunogold electron microscopy reveals that ABCE1 is recruited to sites of assembling wild-type Gag at the plasma membrane but not to sites of an assembly-defective Gag mutant at the plasma membrane. Together these findings demonstrate that a population of Gag present at plasma membrane sites of assembly associates with ABCE1 throughout capsid formation until the onset of virus maturation, which is then followed by virus release. Moreover, the data suggest a linkage between Gag-ABCE1 dissociation and subsequent events of virion production.  相似文献   

3.
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.  相似文献   

4.
S S Rhee  E Hunter 《Cell》1990,63(1):77-86
Two different morphogenic processes of retroviral capsid assembly have been observed: the capsid is either assembled at the plasma membrane during the budding process (type C), or preassembled within the cytoplasm (types B and D). We describe here a gag mutant of Mason-Pfizer monkey virus, a type D retrovirus, in which a tryptophan substituted for an arginine in the matrix protein results in efficient assembly of capsids at the plasma membrane through a morphogenic process similar to that of type C retroviruses. We conclude that a type D retrovirus Gag polyprotein contains an additional, dominant signal that prevents immediate transport of precursors from the site of biosynthesis to the plasma membrane. Instead, they are directed to and retained at a cytoplasmic site where a concentration sufficient for self-assembly into capsids occurs. Thus, capsid assembly processes for different retroviruses appear to differ only in the intracellular site to which capsid precursors are directed.  相似文献   

5.
6.
Retroviral assembly is driven by multiple interactions mediated by the Gag polyprotein, the main structural component of the forming viral shell. Critical determinants of Gag oligomerization are contained within the C-terminal domain (CTD) of the capsid protein, which also harbors a conserved sequence motif, the major homology region (MHR), in the otherwise highly variable Gag. An unexpected clue about the MHR function in retroviral assembly emerges from the structure of the zinc finger-associated SCAN domain we describe here. The SCAN dimer adopts a fold almost identical to that of the retroviral capsid CTD but uses an entirely different dimerization interface caused by swapping the MHR-like element between the monomers. Mutations in retroviral capsid proteins and functional data suggest that a SCAN-like MHR-swapped CTD dimer forms during immature particle assembly. In the SCAN-like dimer, the MHR contributes the major part of the large intertwined dimer interface explaining its functional significance.  相似文献   

7.
The capsid protein (CA) of the mature human immunodeficiency virus (HIV) contains an N-terminal beta-hairpin that is essential for formation of the capsid core particle. CA is generated by proteolytic cleavage of the Gag precursor polyprotein during viral maturation. We have determined the NMR structure of a 283-residue N-terminal fragment of immature HIV-1 Gag (Gag(283)), which includes the intact matrix (MA) and N-terminal capsid (CA(N)) domains. The beta-hairpin is unfolded in Gag(283), consistent with the proposal that hairpin formation occurs subsequent to proteolytic cleavage of Gag, triggering capsid assembly. Comparison of the immature and mature CA(N) structures reveals that beta-hairpin formation induces a approximately 2 A displacement of helix 6 and a concomitant displacement of the cyclophylin-A (CypA)-binding loop, suggesting a possible allosteric mechanism for CypA-mediated destabilization of the capsid particle during infectivity.  相似文献   

8.
The nucleocapsid (NC) domains of retrovirus precursor Gag (PrGag) proteins play an essential role in virus assembly. Evidence suggests that NC binding to viral RNA promotes dimerization of PrGag capsid (CA) domains, which triggers assembly of CA N-terminal domains (NTDs) into hexamer rings that are interconnected by CA C-terminal domains. To examine the influence of dimerization on human immunodeficiency virus type 1 (HIV-1) Gag protein assembly in vitro, we analyzed the assembly properties of Gag proteins in which NC domains were replaced with cysteine residues that could be linked via chemical treatment. In accordance with the model that Gag protein pairing triggers assembly, we found that cysteine cross-linking or oxidation reagents induced the assembly of virus-like particles. However, efficient assembly also was observed to be temperature dependent or required the tethering of NTDs. Our results suggest a multistep pathway for HIV-1 Gag protein assembly. In the first step, Gag protein pairing through NC-RNA interactions or C-terminal cysteine linkage fosters dimerization. Next, a conformational change converts assembly-restricted dimers or small oligomers into assembly-competent ones. At the final stage, final particle assembly occurs, possibly through a set of larger intermediates.  相似文献   

9.
The structural protein (Gag) of Drosophila retrovirus gypsy contains capsid and nucleocapsid domains. Gag forms virus-like particles in a bacterial cell; furthermore, its capsid alone is able to form aggregates. However, aggregates assembled from the capsid vary in size and are less organized than particles formed by a full-length Gag. The nucleocapsid determines the organization and structure of the particles, which is ensured by the amino acid residues at its N-terminal (a nucleocapsid proximal part). The assembly of the particle occurs in the presence of any RNAs or single-stranded DNA oligonucleotides.  相似文献   

10.
11.
During human immunodeficiency virus, type 1 (HIV-1) assembly, Gag polypeptides multimerize into immature HIV-1 capsids. The cellular ATP-binding protein ABCE1 (also called HP68 or RNase L inhibitor) appears to be critical for proper assembly of the HIV-1 capsid. In primate cells, ABCE1 associates with Gag polypeptides present in immature capsid assembly intermediates. Here we demonstrate that the NC domain of Gag is critical for interaction with endogenous primate ABCE1, whereas other domains in Gag can be deleted without eliminating the association of Gag with ABCE1. NC contains two Cys-His boxes that form zinc finger motifs and are responsible for encapsidation of HIV-1 genomic RNA. In addition, NC contains basic residues known to play a critical role in nonspecific RNA binding, Gag-Gag interactions, and particle formation. We demonstrate that basic residues in NC are needed for the Gag-ABCE1 interaction, whereas the cysteine and histidine residues in the zinc fingers are dispensable. Constructs that fail to interact with primate ABCE1 or interact poorly also fail to form capsids and are arrested at an early point in the immature capsid assembly pathway. Whereas others have shown that basic residues in NC bind nonspecifically to RNA, which in turn scaffolds or nucleates assembly, our data demonstrate that the same basic residues in NC act either directly or indirectly to recruit a cellular protein that also promotes capsid formation. Thus, in cells, basic residues in NC appear to act by two mechanisms, recruiting both RNA and a cellular ATPase in order to facilitate efficient assembly of HIV-1 capsids.  相似文献   

12.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

13.
During HIV-1 assembly, Gag polypeptides multimerize to form an immature capsid and also package HIV-1 genomic RNA. Assembling Gag forms immature capsids by progressing through a stepwise pathway of assembly intermediates containing the cellular ATPase ABCE1, which facilitates capsid formation. The NC domain of Gag is required for ABCE1 binding, acting either directly or indirectly. NC is also critical for Gag multimerization and RNA binding. Previous studies of GagZip chimeric proteins in which NC was replaced with a heterologous leucine zipper that promotes protein dimerization but not RNA binding established that the RNA binding properties of NC are dispensable for capsid formation per se. Here we utilized GagZip proteins to address the question of whether the RNA binding properties of NC are required for ABCE1 binding and for the formation of ABCE1-containing capsid assembly intermediates. We found that assembly-competent HIV-1 GagZip proteins formed ABCE1-containing intermediates, while assembly-incompetent HIV-1 GagZip proteins harboring mutations in residues critical for leucine zipper dimerization did not. Thus, these data suggest that ABCE1 does not bind to NC directly or through an RNA bridge, and they support a model in which dimerization of Gag, mediated by NC or a zipper, results in exposure of an ABCE1-binding domain located elsewhere in Gag, outside NC. Additionally, we demonstrated that immature capsids formed by GagZip proteins are insensitive to RNase A, as expected. However, unexpectedly, immature HIV-1 capsids were almost as insensitive to RNase A as GagZip capsids, suggesting that RNA is not a structural element holding together immature wild-type HIV-1 capsids.  相似文献   

14.
HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD) of capsid (CA), which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers) but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD) that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent particle assembly in cells.  相似文献   

15.
The structural biology of HIV assembly   总被引:6,自引:0,他引:6  
HIV assembly and replication proceed through the formation of morphologically distinct immature and mature viral capsids that are organized by the Gag polyprotein (immature) and by the fully processed CA protein (mature). The Gag polyprotein is composed of three folded polypeptides (MA, CA, and NC) and three smaller peptides (SP1, SP2, and p6) that function together to coordinate membrane binding and Gag-Gag lattice interactions in immature virions. Following budding, HIV maturation is initiated by proteolytic processing of Gag, which induces conformational changes in the CA domain and results in the assembly of the distinctive conical capsid. Retroviral capsids are organized following the principles of fullerene cones, and the hexagonal CA lattice is stabilized by three distinct interfaces. Recently identified inhibitors of viral maturation act by disrupting the final stage of Gag processing, or by inhibiting the formation of a critical intermolecular CA-CA interface in the mature capsid. Following release into a new host cell, the capsid disassembles and host cell factors can potently restrict this stage of retroviral replication. Here, we review the structures of immature and mature HIV virions, focusing on recent studies that have defined the global organization of the immature Gag lattice, identified sites likely to undergo conformational changes during maturation, revealed the molecular structure of the mature capsid lattice, demonstrated that capsid architectures are conserved, identified the first capsid assembly inhibitors, and begun to uncover the remarkable biology of the mature capsid.  相似文献   

16.
Togavirus nucleocapsids have a characteristic icosahedral structure and are composed of multiple copies of a capsid protein complexed with genomic RNA. The assembly of rubella virus nucleocapsids is unique among togaviruses in that the process occurs late in virus assembly and in association with intracellular membranes. The goal of this study was to identify host cell proteins which may be involved in regulating rubella virus nucleocapsid assembly through their interactions with the capsid protein. Capsid was used as bait to screen a CV1 cDNA library using the yeast two-hybrid system. One protein that interacted strongly with capsid was p32, a cellular protein which is known to interact with other viral proteins. The interaction between capsid and p32 was confirmed using a number of different in vitro and in vivo methods, and the site of interaction between these two proteins was shown to be at the mitochondria. Interestingly, overexpression of the rubella virus structural proteins resulted in clustering of the mitochondria in the perinuclear region. The p32-binding site in capsid is a potentially phosphorylated region that overlaps the viral RNA-binding domain of capsid. Our results are consistent with the possibility that the interaction of p32 with capsid plays a role in the regulation of nucleocapsid assembly and/or virus-host interactions.  相似文献   

17.
The retroviral Gag polyprotein is necessary and sufficient for assembly and budding of viral particles. However, the exact inter- and intramolecular interactions of the Gag polyproteins during this process are not known. To locate functional domains within Gag, we generated chimeric proviruses between human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MuLV). In these chimeric proviruses, the matrix or capsid proteins of MuLV were precisely replaced with the matrix or capsid proteins of HIV-1. Although the chimeric proviruses were unable to efficiently assemble into mature viral particles by themselves, coexpression of wild-type MuLV Gag rescued the HIV proteins into virions. The specificity of the rescue of HIV proteins into MuLV virions shows that specific interactions involving homologous matrix or capsid regions of Gag are necessary for retroviral particle formation.  相似文献   

18.
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag) sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag)-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.  相似文献   

19.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

20.
Cells expressing the yeast retrotransposon Ty3 form concentrated foci of Ty3 proteins and RNA within which virus-like particle (VLP) assembly occurs. Gag3, the major structural protein of the Ty3 retrotransposon, is composed of capsid (CA), spacer (SP), and nucleocapsid (NC) domains analogous to retroviral domains. Unlike the known SP domains of retroviruses, Ty3 SP is highly acidic. The current studies investigated the role of this domain. Although deletion of Ty3 SP dramatically reduced retrotransposition, significant Gag3 processing and cDNA synthesis occurred. Mutations that interfered with cleavage at the SP-NC junction disrupted CA-SP processing, cDNA synthesis, and electron-dense core formation. Mutations that interfered with cleavage of CA-SP allowed cleavage of the SP-NC junction, production of electron-dense cores, and cDNA synthesis but blocked retrotransposition. A mutant in which acidic residues of SP were replaced with alanine failed to form both Gag3 foci and VLPs. We propose a speculative "spring" model for Gag3 during assembly. In the first phase during concentration of Gag3 into foci, intramolecular interactions between negatively charged SP and positively charged NC domains of Gag3 limit multimerization. In the second phase, the NC domain binds RNA, and the bound form is stabilized by intermolecular interactions with the SP domain. These interactions promote CA domain multimerization. In the third phase, a negatively charged SP domain destabilizes the remaining CA-SP shell for cDNA release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号