首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

2.
The molecular basis of cellular auxin transport is still not fully understood. Although a number of carriers have been identified and proved to be involved in auxin transport, their regulation and possible activity of as yet unknown transporters remain unclear. Nevertheless, using single-cell-based systems it is possible to track the course of auxin accumulation inside cells and to specify and quantify some auxin transport parameters. The synthetic auxins 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (NAA) are generally considered to be suitable tools for auxin transport studies because they are transported specifically via either auxin influx or efflux carriers, respectively. Our results indicate that NAA can be metabolized rapidly in tobacco BY-2 cells. The predominant metabolite has been identified as NAA glucosyl ester and it is shown that all NAA metabolites were retained inside the cells. This implies that the transport efficiency of auxin efflux transporters is higher than previously assumed. By contrast, the metabolism of 2,4-D remained fairly weak. Moreover, using data on the accumulation of 2,4-D measured in the presence of auxin transport inhibitors, it is shown that 2,4-D is also transported by efflux carriers. These results suggest that 2,4-D is a promising tool for determining both auxin influx and efflux activities. Based on the accumulation data, a mathematical model of 2,4-D transport at a single-cell level is proposed. Optimization of the model provides estimates of crucial transport parameters and, together with its validation by successfully predicting the course of 2,4-D accumulation, it confirms the consistency of the present concept of cellular auxin transport.  相似文献   

3.
4.
The removal or reduction in concentration of auxin is often a successful method for obtaining morphogenesis in cell cultures of higher plants, such as carrot, but not for soybean. For this reason, the metabolism of one auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), was compared in both carrot and soybean cells. Whereas soybean cells conjugated a high percentage of their 2,4-D to amino acids, carrot cells contained primarily free 2,4-D. Moreover, after long-term exposure to 2,4-D, carrot cells released much more 2,4-D upon transfer to 2,4-D-free (embryogenic) medium than did soybean cells. It appears that the retention of 2,4-D by soybean cells might interfere with subsequent morphogenesis. Because no impairment of 2,4-D efflux was found with short-term exposure to radiolabeled 2,4-D, it was concluded that 2,4-D retention in soybean cells might be due to a time-dependent, metabolic process. The conjugation of 2,4-D to amino acids was shown to be one such time-dependent process. Additionally, the release of 2,4-D from the cells was shown to be due primarily to a loss of free 2,4-D and not 2,4-D-amino acid conjugates. It seems that the greater retention of 2,4-D by soybean cells upon transfer to 2,4-D-free medium is due to greater formation of 2,4-D-amino acid conjugates.  相似文献   

5.
Two auxin-inducible glutathione S-transferase (GST, EC 2.5.1.18) isozymes from tobacco (Nicotiana tabacum, White Burley) were partially characterized. GST1-1 and GST2-1 are members of a recently identified new type of plant GST isozymes that we will here refer to as type III. Both enzymes were active, with 1-chloro-2,4-dinitrobenzene as a substrate, when expressed in bacteria as fusion proteins. The apparent Km for 1-chloro-2,4-dinitrobenzene was found to be 0.85 [plus or minus] 0.25 mM for GST1-1 and 0.20 [plus or minus] 0.15 mM for GST2-1. The apparent Km for glutathione was similar for both enzymes, 0.40 [plus or minus] 0.15 mM. The in vitro activity of both enzymes could be inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic acid, with an apparent Ki of 80 [plus or minus] 40 [mu]M for GST1-1 and 200 [plus or minus] 100 [mu]M for GST2-1. The GST1-1 was also inhibited by structurally related substances, such as 2,4-dichlorobenzoic acid, with a roughly similar Ki. The nonchlorinated structures benzoic acid and phenoxyacetic acid did not inhibit. p-Chloroisobutyric acid, or clofibric acid, an auxin-transport inhibitor, was found to be an active inhibitor as well. The strongest inhibitor identified, however, was a phenylacetic acid derivative, ethacrynic acid, which showed an apparent Ki of 5 [plus or minus] 5 [mu]M for both enzymes. This substance is a known inducer as well as a substrate of specific mammalian GSTs. The results presented here indicate that the type III plant GSTs might be involved in the metabolism or transport of chlorinated substances that are structurally related to auxins. The possibility that auxins are endogenous ligands or substrates for GSTs is discussed.  相似文献   

6.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

7.
Accumulation of radiolabelled naphthalene-1-acetic acid (1-NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), and indole-3-acetic acid (IAA) has been measured in suspension-cultured tobacco (Nicotiana tabacum) cells. In this paper is presented a simple methodology allowing activities of the auxin influx and efflux carriers to be monitored independently by measuring the cellular accumulation of [3H]NAA and [14C]2,4-D. We have shown that 1-NAA enters cells by passive diffusion and has its accumulation level controlled by the efflux carrier. By contrast, 2,4-D uptake is mostly ensured by the influx carrier and this auxin is not secreted by the efflux carrier. Both auxin carriers contribute to IAA accumulation. The kinetic parameters and specificity of each carrier have been determined and new information concerning interactions with naphthylphthalamic acid, pyrenoylbenzoic acid, and naphthalene-2-acetic acid are provided. The relative contributions of diffusion and carrier-mediated influx and efflux to the membrane transport of 2,4-D, 1-NAA, and IAA have been quantified, and the data indicate that plant cells are able to modulate over a large range their auxin content by modifying the activity of each carrier.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 1-NAA naphthalene-1-acetic acid - 2-NAA naphthalene-2-acetic acid - NPA N-1-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - Vm maximum transport capacity of the carrier In honour of Professor Dieter Klämbt's 65th birthdayThe authors thank Drs. A.E. Geissler and G.F. Katekar (CSIRO, Canberra City, Australia) for providing auxin efflux carrier inhibitors CPD, CPP, and PBA, and Dr. H. Barbier-Brygoo (Institut des Sciences Végétales, CNRS, Gif-sur-Yvette, France) for helpful discussions. This work was supported by funds from the Centre National de la Recherche Scientifique (UPR0040).  相似文献   

8.
Plant Ku genes were identified very recently in Arabidopsis thaliana, and their roles in repair of double-stranded break DNA and maintenance of telomere integrity were scrutinized. In this study, the cDNAs encoding Ku70 (VrKu70) and Ku80 (VrKu80) were isolated from mung bean (Vigna radiata L.) hypocotyls. Both genes were expressed widely among different tissues of mung bean with the highest levels in hypocotyls and leaves. The VrKu gene expression was stimulated by exogenous auxins in a concentration- and time-dependent manner. The stimulation could be abolished by auxin transport inhibitors, N-(1-naphthyl) phthalamic acid and 2,3,5-triiodobenzoic acid implicating that exogenous auxins triggered the effects following their uptake by the cells. Further analysis using specific inhibitors of auxin signaling showed that the stimulation of VrKu expression by 2,4-dichlorophenoxyacetic acid (2,4-D) was suppressed by intracellular Ca(2+) chelators, calmodulin antagonists, and calcium/calmodulin dependent protein kinase inhibitors, suggesting the involvement of calmodulin in the signaling pathway. On the other hand, exogenous indole-3-acetic acid (IAA) and alpha-naphthalene acetic acid (NAA) stimulated VrKu expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Altogether, it is thus proposed that 2,4-D and IAA (or NAA) regulate the expression of VrKu through two distinct pathways.  相似文献   

9.
To clarify the roles of auxin-binding proteins (ABPs) in the action of auxin, soluble auxin-binding proteins were isolated from an extract of etiolated mung bean hypocotyls by affinity chromatography on 2,4-dichlorophenoxyacetic acid (2,4-D)-linked Sepharose 4B. A 39-kDa polypeptide was retained on the affinity column and eluted with a solution containing IAA or 2,4-D, but not with a solution containing benzoic acid. The protein was then purified by several column-chromatographic steps. The apparent molecular mass of the protein was estimated to be 77 kDa by gel filtration and 39 kDa by SDS-PAGE. We designated this protein ABP39. The partial amino acid sequences of ABP39, obtained after chemical cleavage by CNBr, revealed high homology with alcohol dehydrogenase (ADH; EC 1.2.1.1). While the ABP39 was not capable of oxidizing ethanol, it did catalyze the reduction of indole-3-acetaldehyde (IAAld) to indole-3-ethanol (IEt) with an apparent Km of 22 μ M. The IAAld reductase (EC 1.2.3.1) is specific for NADPH as a cofactor. The ABP39 also catalyzed the reduction of other aldehydes, such as acetaldehyde, benzaldehyde, phenylacetaldehyde and propionealdehyde. Indole-3-aldehyde was a poor substrate. The enzyme activity was inhibited by both indole-3-acetic acid and 2,4-D in a competitive manner. Therefore, the enzyme is considered to be retained on the affinity column by recognition of auxin structure.  相似文献   

10.
NADH oxidation by plasma membrane vesicles purified from hypocotyls of etiolated soybean seedlings by two-phase partition was stimulated 2- to 3-fold by auxins, indole-3-acetic acid, 2,4-dichlorophenoxy acetic acid (2,4-D), and α-naphthaleneacetic acid. The stimulation was concentration dependent in the presence or absence of detergent with a maximum for 2,4-D at 1 micromolar. The NADH oxidation activity was solubilized with the zwitterionic detergent CHAPS and purified by ion exchange chromatography and gel filtration approximately 2000-fold over the total homogenate. Both the partially purified fraction and an active band from nondenaturing gel electrophoresis revealed the same three bands when analyzed by denaturing gel electrophoresis. When obtained from plasma membrane vesicles from the region of rapid cell elongation, the NADH oxidase complex retained auxin responsiveness throughout purification (3- to 5-fold stimulation by 1 micromolar 2,4-D).  相似文献   

11.
Pear fruit cells (Pyrus communis L. cv Passe Crassane) stopped dividing when subcultured in a bioreactor under auxin starvation in the presence of 0.37 molar mannitol. The cessation of cell division was preceded by the accumulation of a specific basic polypeptide of 24 kilodalton. Readdition of 2.3 micromolar 2,4-dichlorophenoxyacetic acid (2,4-D) neither caused a resumption of cell division nor depressed the accumulation of this polypeptide. Under complete auxin starvation, cells began to die at day 18. In vivo radioactive labeling of proteins followed by two-dimensional electrophoresis showed that during auxin starvation the synthesis of some polypeptides including the 24 kilodalton one (referred to as homeostasis-related proteins, HRPs) was decreased while the synthesis of some others (referred as senescence-related proteins, SRPs) was increased. Readdition of 2.3 micromolar 2,4-D postponed the onset of cell death by 10 to 15 days while supplementation with 7.6 micromolar abscisic acid advanced cell death by 8 days. Two-dimensional analysis of protein synthesis indicated that both hormones interact on the synthesis of these two groups of polypeptides. The levels of most HRPs were maintained or increased in the presence of auxin, while the levels of the SRPs were decreased by auxin and increased by abscisic acid. Short and long-term effects of 2,4-D and abscisic acid on the synthesis of specific polypeptides were observed, allowing a discrimination between the direct and indirect effect of both hormones on the development of cell senescence.  相似文献   

12.
Summary The types and amount of plasma membrane proteins synthesized during cell elongation in response to auxin (2,4-dichlorophenoxyacetic acid) treatment were investigated. Auxin-treated and control soybean (Glycine max L.) hypocotyl segments were incubated with [35S]methionine for various times, ranging from 0.5 to 18 h, prior to isolation of plasma membrane by aqueous two-phase partitioning. Protein accumulated in the plasma membrane after auxin treatment. Despite this accumulation, the protein incorporation rate, estimated by the amount of label in the plasma membrane following a 0.5 h [35S]methionine pulse, was unaffected by auxin treatment at both 0.5 and 18 h of treatment. Protein apparently accumulated by a mechanism distinct from enhanced incorporation. The plasma membrane proteins synthesized by elongating segments differed from controls at 18 h, as evidenced by the pattern of fluorographs following a 0.5 h radiolabelling. However, auxin treatment did not alter the 2-D gel pattern of the polypeptides detectable by silver stain.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IEF isoelectric focusing - PM plasma membrane - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
14.
The development of somatic embryos is, in many plants, inhibited by 2,4-dichlorophenoxyacetic acid (2,4-D) and other auxins. The finding that difluoromethylornithine (DFMO) can counteract this inhibition has been used to test some of the hypotheses for the mechanism of inhibition.
Inhibition of somatic embryogenesis in carrot ( Daucus carota L.) by exogenous ethylene (from ethephon), antioxidants (ascorbic acid and glutathione), ethanol/acetaldehyde and abscisic acid was not counteracted by DFMO, indicating that the inhibitory effect of 2,4-D is not manifest through the formation of these compounds. Embryogenesis was abolished by micromolar concentrations of the polar auxin transport inhibitors 2, 3, 5-triiodobenzoic acid (TIBA), N-1-naphthylphthalamic acid (NPA) and 9-hydroxyfluorene-9-carboxylic acid (HFCA). This inhibition was counteracted to a considerable extent by DFMO. Inhibition by relatively high concentrations of the antiauxin 2-( p -chlorophenoxy)-isobutyric acid (CPIB), which does not affect polar auxin transport, was in contrast not counteracted by DFMO. These findings indicate that exogenous auxins may inhibit embryogenesis by interfering with the ability of postglobular embryos to set up internal auxin gradients necessary for polarized growth.  相似文献   

15.
Diacylglycerol contents of excised soybean (Glycine max L.) hypocotyl segments, incubated for 4 hours in the presence or absence of a growth promoting concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) were monitored by three different methods as a sensitive measure of the action in vivo of C-type phospholipases. By all three methods, steady state levels of diacylglycerols representing about 3% of the total lipids or about 7% of the neutral lipids, depending on method of assay, declined 18% over 4 hours of incubation as determined by extraction of total lipids and analysis by thin layer chromatography and densitometry. The average decline with 2,4-D-treated segments was less but the difference from controls was not significant. In those experiments where a small effect of 2,4-D was noted, the fraction showing an elevated diacylglycerol level in response to 2,4-D, after separation into membrane and supernatant fractions, was the supernatant and not the membranes. Results were confirmed from analyses of total fatty acids in each of the major lipid fractions and from diacylglycerol assays by conversion into phosphatidic acid upon incubation with [γ-32P]ATP and purified diacylglycerol phosphokinase from Escherichia coli. In the presence of 2,4-D, the diacylglycerol content of the membranes was unchanged compared to membranes from control segments. As with the densitometric method, the small 2,4-D induced increase in diacylglycerols, when observed, was insignificant and in the supernatant. The only membrane-associated lipid fraction consistently showing a response to 2,4-D was the fraction containing sterols esterified with fatty acids. Either total microsomes or purified plasma membranes when incubated for 10 to 20 minutes with 1 micromolar 2,4-D showed no accelerated formation of diacylglycerols compared to membranes not incubated. The results do not support operation during auxin growth of the animal paradigm where diacylglycerol activation of C-type protein kinases occurs in response to activated phospholipase C breakdown of phosphoinositides.  相似文献   

16.
Imhoff V  Muller P  Guern J  Delbarre A 《Planta》2000,210(4):580-588
 Active auxin transport in plant cells is catalyzed by two carriers working in opposite directions at the plasma membrane, the influx and efflux carriers. A role for the efflux carrier in polar auxin transport (PAT) in plants has been shown from studies using phytotropins. Phytotropins have been invaluable in demonstrating that PAT is essential to ensure polarized and coordinated growth and to provide plants with the capacity to respond to environmental stimuli. However, the function of the influx carrier at the whole-plant level is unknown. Our work aims to identify new auxin-transport inhibitors which could be employed to investigate its function. Thirty-five aryl and aryloxyalkylcarboxylic acids were assayed for their ability to perturb the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene-1-acetic acid (1-NAA) in suspension-cultured tobacco (Nicotiana tabacum L.) cells. As 2,4-D and 1-NAA are preferentially transported by the influx and efflux carriers, respectively, accumulation experiments utilizing synthetic auxins provide independant information on the activities of both carriers. The majority (60%) of compounds half-inhibited the carrier-mediated influx of [14C]2,4-D at concentrations of less than 10 μM. Most failed to interfere with [3H]NAA efflux, at least in the short term. Even though they increasingly perturbed auxin efflux when given a prolonged treatment, several compounds were much better at discriminating between influx and efflux carrier activities than naphthalene-2-acetic acid which is commonly employed to investigate influx-carrier properties. Structure-activity relationships and factors influencing ligand specificity with regard to auxin carriers are discussed. Received: 28 June 1999 / Accepted: 28 August 1999  相似文献   

17.
Glutathione transferase (GST) was purified from the microsomes of rat liver by glutathione affinity chromatography. The interaction of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1,4-benzoquinone with microsomal GST was investigated and compared with cytosolic GST. The kinetic inhibition pattern of 1,4-benzoquinone towards microsomal GST was found to be different from that towards cytosolic GST. Microsomal GST purified by affinity chromatography was inhibited by 2,4-D in a non dose-dependent manner, while the crude microsomal GST was inhibited in a dose-dependent manner. This difference was shown to be induced by a reaction on the affinity column, and not by Triton X-100 (also shown to be a GST inhibitor), glutathione, or the elution buffer 0.2% Triton X-100 and 5 mM glutathione in 50 mM Tris-HCl, pH 9.6. The binding of microsomal GST to the affinity matrix caused a partial inactivation of the active site for 2,4-D interaction. The results show that the properties of soluble GST enzymes may not be extrapolated to the microsomal ones.  相似文献   

18.
Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号