首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Circular dichroism (CD) spectra of individual mixed-ligand copper(II) complexes of 1,3-dicarbonyl compounds, (1S)- or (1R)-3-hydroxymethylene camphor, (1S)-3-trifluoroacetyl camphor, or (1R)-2-hydroxymethylene menthone, and α-amino acids, alanine, valine, proline, or their N-alkyl derivatives, were calculated from CD spectra of equilibrium solutions containing the above constituents in methanol or ethylene dichloride. Diastereomeric mixed-ligand complexes incorporating identical dicarbonyl but enantiomeric N-alkyl-α-amino acid ligands exhibit quasi-enantiomeric CD spectra. Unsubstituted amino acids, on the contrary, will make no decisive contributions to the net optical activity spectrum of the mixed-ligand complexes. Formation constants of diastereomeric mixed-ligand complexes have been calculated from data on disproportionation of the latter into corresponding equally paired complexes. Enantioselectivity was demonstrated to amount to up to 700 cal/mol. Possible steric structures of mixed-ligand complexes are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Two couples of enantiomeric platinum(II) complexes: Pt(L1a)Cl ( 1a ), Pt(L1b)Cl ( 1b ) and Pt(L1a)(C ≡ C ? Ph) ( 2a ), Pt(L1b)(C ≡ C ? Ph) ( 2b ) (L1a = (+)‐1,3‐di‐(2‐(4,5‐pinene)pyridyl)benzene, L1b = (?)‐1,3‐di‐(2‐(4,5‐pinene)pyridyl)benzene) were synthesized and characterized. Their absolute configurations were determined by single crystal X‐ray diffraction and further verified by circular dichroism (CD) spectra (including electronic circular dichroism [ECD] and vibrational circular dichroism [VCD]). These complexes show interesting mechanoluminescence and/or vapoluminescence due to crystalline‐to‐amorphous transformation. The crystalline solids, grinding‐induced amorphous powders, and vapor‐induced amorphous powders of complexes 2a and 2b were comparatively investigated by solid‐state ECD and VCD spectra. The transformation from crystalline solids to amorphous powders was accompanied by significant variances of the spectral feature in both ECD and VCD spectra. Chirality 25:384–392, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L1)(L2)ClO4] (complex I), [Cu(L2)(L3)]ClO4] (complex II) and [Cu(L4)2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.  相似文献   

4.
In spite of the important role of angiotensin converting enzyme 2 (ACE2) in the cardiovascular system, little is known about the substrate structural requirements of the AngII–ACE2 interaction. Here we investigate how changes in angiotensin II (AngII) structure affect binding and cleavage by ACE2. A series of C3 β‐amino acid AngII analogs were generated and their secondary structure, ACE2 inhibition, and proteolytic stability assessed by circular dichroism (CD), quenched fluorescence substrate (QFS) assay, and LC‐MS analysis, respectively. The β‐amino acid‐substituted AngII analogs showed differences in secondary structure, ACE2 binding and proteolytic stability. In particular, three different subsets of structure‐activity profiles were observed corresponding to substitutions in the N‐terminus, the central region and the C‐terminal region of AngII. The results show that β‐substitution can dramatically alter the structure of AngII and changes in structure correlated with ACE2 inhibition and/or substrate cleavage. β‐amino acid substitution in the N‐terminal region of AngII caused little change in structure or substrate cleavage, while substitution in the central region of AngII lead to increased β‐turn structure and enhanced substrate cleavage. β‐amino acid substitution in the C‐terminal region significantly diminished both secondary structure and proteolytic processing by ACE2. The β‐AngII analogs with enhanced or decreased proteolytic stability have potential application for therapeutic intervention in cardiovascular disease. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The use of vibrational circular dichroism spectroscopy for the chiral recognition of the two epimers of 6-cedrol, tricyclic sesquiterpenes, which contains oxygen as the heaviest atom, is shown. Bands in the 1500-850 cm(-1) region of the spectra were analyzed to calculate the anisotropy factors (g), which provided the regions of maximum circular dichroism effect for each epimer.  相似文献   

6.
Copper(II) complexes of N2-octyl-(S)-phenylalaninamide (Noc-Phe-NH2), N2-dodecyl-(S)-phenylalaninamide (Ndo-Phe-NH2), and N2-octyl-(S)-norleucinamide (Noc-NLeu-NH2), dynamically adsorbed on a reversed-phase C18 column, were able to perform the direct enantiomeric separation of unmodified amino acids, amino acid amides and esters, hydroxy acids, and dipeptides by elution with aqueous or mixed aqueous-organic solutions containing copper(II) sulphate or acetate. The role played by several parameters in the separation procedure was examined with the copper(II) complex of Noc-Phe-NH2 [concentration of the copper(II) ion in the eluent, pH and eluent polarity, amount of adsorbed selector]. The separation was shown to occur entirely on the stationary phase. The mechanism of chiral discrimination is discussed in terms of the chromatographic parameters and of the structure of the copper(II) complexes in solution and in the solid state. The chiral stationary phase maintained its separation ability for about 3 months. However, the column could be easily restored by recovering the selector with methanol and repeating the loading procedure. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Herein, we report a general method for quantitative measurement of the configurational stability of the stereogenic nitrogen coordinated to M (II) in the corresponding square planar complexes. This stereochemical approach is quite sensitive to steric and electronic effects of the substituents and shown to work well for Ni(II), Pd(II), and Cu(II) complexes. Structural simplicity of the compounds used, coupled with high sensitivity and reliability of experimental procedures, bodes well for application of this approach in evaluation of chemical stability and stereochemical properties of newly designed chiral ligands for general asymmetric synthesis of tailor‐made amino acids.  相似文献   

8.
Several α-monoalkyl-α-aryloxyacetic acids have been synthesized and resolved into their optical antipodes; their absolute configuration was also established by chiroptical and chemical methods. The two enantiomers of a series of these compounds show opposite effects on skeletal muscle fibers chloride conductance. Therefore a HPLC procedure was developed for the direct determination of the optical purity of the antipodes before submitting them to biological tests. The chromatographic study was performed on DACH-DNB chiral stationary phase which shows a remarkable enantioselectivity for the considered compounds as free acids, esters and amides under different conditions with essentially the same chiral mechanism of separation. © 1992 Wiley-Liss, Inc.  相似文献   

9.
The synthesis of 5-amino-5-deoxy-1,2-O-isopropylidene-alpha-D-glucofuranose (8) was carried out via 5-azido-5-deoxy-1,2:3,4-O-diisopropylidene-alpha-D-glucofuranose (6), its reduction with Raney-Nickel and deprotection. 5-N-(beta-Ketoen)amino-5-deoxy-1,2-O-isopropylidene-alpha-D-glucofuranoses (8a-f) were synthesized from 5-amino-5-deoxy-1,2-O-isopropylidene-alpha-D-glucofuranose and beta-ketoenolethers leading to ligands with symmetrically substituted double bonds (8a, 8b) and e/z isomeric mixtures with unsymmetrical substitution (8c-f). Reaction of the ligands with Cu(II) ions leads to binuclear complexes of the general formula Cu2L2. In contrast to copper(II) complexes which are not derived from amino carbohydrates the metal centers in the compounds saturate their coordination sphere by complexation of additional solvent molecules, interaction with neighboring complex molecules, or free hydroxyl groups of the own ligand. Residues of the ketoen moiety, R1 and R2, also influence the electronic properties of the metal centers. The combination of factors leads to different catalytic properties of the complexes in catecholoxidase-like reactions.  相似文献   

10.
In contrast to the comprehensive structural information about metal complexes with adenine, the corresponding to its isomer 2-aminopurine (H2AP) is extremely poor. With the aim to rationalize the metal binding pattern of H2AP, we report the molecular and/or crystal structure of four novel compounds with various iminodiacetate-like (IDA-like) copper(II) chelates: [Cu(IDA)(H2AP)(H2O)]·H2O (1), [Cu(MIDA)(H2AP)(H2O)]·3H2O (2), {[Cu(NBzIDA)(H2AP)]·1.5H2O}n (3) and [Cu(MEBIDA)(H2AP)(H2O)]·3.5 H2O (4), where IDA, MIDA, NBzIDA and MEBIDA are R = H, CH3, benzyl- and p-tolyl- in R-N-(CH2-COO-)2 ligands, respectively. Synthesis strategies include direct reactions of copper(II) chelates with H2AP (alone, for 1 and 3) and/or with the base pairs H2AP:thymine (1-4) or H2AP:cytosine (3). Moreover, these compounds have been also investigated by spectral and thermal methods. Regardless of the N-derivative of the IDA chelator, molecular recognition between H2AP and the referred Cu(II)-chelates only displays the formation of the Cu-N7(purine-like) bond what is clearly in contrast to what was previously reported for adenine. The metal binding pattern of 2-aminopurine is discussed on the basis of the electronic effects and steric hindrance of the 2-amino exocyclic group.  相似文献   

11.
Copper(II) complexes of (S)-phenylalaninamide have been successfully used for the direct enantiomeric separation of unmodified (R,S)-α-hydroxy acids in reversed phase high-performance liquid chromatography (RP-HPLC). The effect of various parameters (pH, eluent polarity, selector concentration) on enantioselectivity is discussed. Evidence is provided that a mechanism of ligand exchange is actually occurring during the chromatographic separation. The method is very convenient and easy to use, and the chiral selector is commercially available and can be recovered at the end of the analysis. A conventional achiral RP-ODS-2 column is used and no pretreatment of the samples is required. This method allows the accurate determination of the enantiomeric excess of α-hydroxy acids in synthetic and biological samples. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Optically active enamines of 2-(2′-pyrido)acetophenone or 2-(2′-quinolino)acetophenone with (R)-1-phenylethylamine, (R)-1-(1-naphthyl)ethylamine, (R)-cyclohexylethylamine, and (R)-phenylglycinol were prepared and their copper(I) complexes used in the enantioselective cyclopropanation of styrene with ethyl- and menthyldiazoacetate. Enantioselectivities of up to 42% enantiomeric excess were obtained for cis/trans 2-phenylcyclopropan-1-carboxylic acid ethyl esters, as determined by gas-liquid chromatography (GLC) on chiral chromatographic columns. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Two new homo- and hetero-dinuclear complexes, [Cu2L(im)](ClO4)34H2O (1) and [CuZnL(im)](ClO4)34H2O (2) (where Im=1H-1midazole and L = 3, 6, 9, 16, 19, 22-hexaaza-6, 19-bis(1H-imidazol-4-ylmethyl)tricycle[22, 2, 2, 211,14]triaconta-1, 11, 13, 24, 27, 29-hexaene) were synthesized and characterized as model compounds for the active site of copper(II)–zinc(II) superoxide dismutase (Cu2Zn2–SOD). X-ray crystal structure analysis revealed that the metal centers in both complexes exhibit distorted trigonal-bipyramid coordination geometry and the CuCu and CuZn distances are both 6.02 Å. Magnetic and ESR spectral measurements of 1 showed antiferromagnetic exchange interactions between the imidazolate-bridged Cu(II) ions. The ESR spectrum of 2 displays typical signals of mononuclear Cu(II) complex, demonstrating the formation of heterodinuclear complex 2 rather than a mixture of homodinuclear Cu(II)/Zn(II) complexes. pH-dependent ESR and UV–visible spectral measurements manifest that the imidazolate exists as a bridging ligand from pH 6 to 11 for both complexes. The IC50 values of 1.96 and 1.57 μM [per Cu(II) ion] for 1 and 2 suggest that they are good models for the Cu2Zn2–SOD.  相似文献   

14.
The copper(II) and nickel(II) complexes of three new 1,2-bis(1,4,7-triazacyclononane) ligands containing unsaturated four carbon bridging groups is studied by continuous variation UV-Vis spectroscopic and pH potentiometric equilibrium experiments. The cis-butene-2 (LC) linked ligand may form monomeric MN6-type complexes while the trans-butene-2 (LT) and butyne-2 (LY) ligands are prevented by their stereochemistry from forming monomeric complexes and form oligomeric complexes. It is determined that the stability of the CuLC2+ complex is not appreciably different from the oligomeric complexes of LT and LY. Single-crystal X-ray structure determinations are made on three square pyramidal Cu2L4+ complexes: [Cu2LCCl4] (1), [Cu2LYCl4] (2), and [Cu2LT(NO3)2(H2O)2](NO3)2 (3). The structure of [Ni2(LC)2](ClO4)4 · 2H2O (4) is a binuclear dimer that contains two nickel(II) ions sandwiched between two ligands, indicating that bis([9]aneN3) ligands with four linker atom chains may form either monomeric or oligomeric structures.  相似文献   

15.
NMR spectroxcopy has been used to compare the interaction of ephedrine and N-methylephedrine with β-cyclodextrin, heptakis(2,3-di-O-acetyl)β-cyclodextrin, heptakis(6-O-acetyl)β-cyclodextrin. The stoichiometry of the complexes formed between all three cyclodextrins and N-methylephedrine was found to be 1:1 by UV spectroscopy by means of the Job technique. NMR spectra of the single enantiomers of ephedrine and N-methylephedrine in the presence of all three cyclodextrins gave information about the parts of the ligands which interact differently with the host molecules and may be responsible for the chiral discrimination. To quantify the complex stabilities, binding constants were calculated from the changes in the chemical shifts of the ligand signals upon complexation. Analyses of the coupling constants of both species showed that no significant conformational change occurs upon complexation. ROESY spectra of these optical isomers with all three cyclodextrins provided detailed information about the geometry of the complexes. Different intermolecular cross-peaks between the individual isomers of ephedrine and N-Methylephedrine were found for native β-cyclodextrin and its 2,3-diacetylated derivative but not for 6-acetyl cyclodextrin. Analyses of the intramolecular cross-signals of the ligands confirmed that no significant conformational change occurs upon complexation. Chirality 9:211–219, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Summary Copper(II) complexes CuL1L2 with the ligand pairs 3-phosphoglycerate (PG)/ethylenediamine (en), phosphoserine (PS)/ethylenediamine, phosphoserine/malonate (mal) are shown to be effective in inducing the release of both iron atoms from di-ferric transferrin (Fe2Tf; human serum transferrin) at pH 7.3 in 1 M NaCl at 25°C. Half-times of the reaction with Cu(PG)(en) were less than 1 min at 0.02 M concentration. The iron(III) products are polynuclear hydroxo complexes. There is weaker interaction with Cu(PS) 2 4– and virtually none with Cu(serine)(en) nor Cu(PS)(2,2-bipyridyl), revealing crucial effects of the combined ligand sphere including the phosphomonoester group. The results suggest that the release of iron from Fe2Tf, or from either monoferric transferrins, occurred due to the breakdown of the stability of iron binding in conjunction with the expulsion of the synergistic anion carbonate (or oxalate). The active copper(II) complexes are postulated to be models of membrane components that could liberate iron from transferrin succeeding its uptake at the receptor sites of cells.Abbreviations PG phosphoglycerate - PS phosphoserine - en ethylenediamine - Fe2Tf diferric transferrin - FecTf and FeNTf transferrin with iron bound to the lobe containing the C- or N-terminus, respectively - apoTf apotransferrin - K-3 all-cis-1,3,5-tris(trimethylammonio)-2,4,6-cyclo-hexanetriol - NTA nitrilotriacetic acid; bipy, 2,2-bipyridine; mal, malonate  相似文献   

17.
Three new triply-bridged dinuclear copper(II) compounds with carboxylato bridges, [Cu2(μ-O2CH)(μ-OH)(μ-Cl)(dpyam)2](PF6) (1), [Cu2(μ-O2CH)2(μ-OH)(dpyam)2](PF6) (2) and [Cu2(μ-O2CCH2CH3)2(μ-OH)(dpyam)2](ClO4) (3) (dpyam = di-2-pyridylamine) have been synthesized and characterized crystallographically and spectroscopically. Compound 1 consists of a dinuclear unit in which both copper(II) ions are bridged by three different ligands, i.e., formate, chloride and hydroxide anions, providing a distorted trigonal bipyramidal geometry with a CuN2O2Cl chromophore. Compounds 2 and 3 have two bridging formato ligands and two bridging propionato ligands, respectively, together with a hydroxo bridge. The carboxylato ligands in both compounds 2 and 3 exhibit different coordination modes. One is in a syn, syn η112 bridging mode and the other is in a monoatomic bridging mode. The structure of compound 2 involves a dinuclear unit, with a distorted trigonal bipyramidal geometry around each Cu(II) ion with a CuN2O3 chromophore. Compound 3 contains a non-centrosymmetric unit; the coordination environment around Cu(1) is a distorted square-pyramidal geometry and an intermediate geometry of sp and tbp around the Cu(II) ion. The Cu?Cu separations are 3.061, 3.113 and 3.006 Å for compounds 1, 2 and 3, respectively. The EPR spectra of all three compounds show a broad isotropic signal with a g value around 2.10.The magnetic susceptibility measurements, measured from 5 to 280 K, revealed a moderate ferromagnetic interaction between the Cu(II) ions with a singlet-triplet energy gap (J) of 79.7, 47.8 and 24.1 cm−1, for compounds 1, 2 and 3, respectively. Also a very weak intermolecular antiferromagnetic interaction was observed between the dinuclear units.  相似文献   

18.
Four novel chiral amino alcohols were synthesized from D‐(+)‐camphor and utilized as ligands in a Cu(I)‐catalyzed asymmetric Henry reaction. The reactions were carried out under mild conditions with excellent enantioselectivities and moderate yields without the exclusion of air or moisture. The highest enantioselectivity was observed up to 94% enantiomeric excess (ee) with ligand L1 in toluene at room temperature. Chirality 27:761–765, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Two new copper(II) complexes of the type [Cu(L)X2), where L = (E)-N-phenyl-2-[phenyl (pyridine-2-yl)methylene]hydrazinecarboxamide X = Cl/Br have been synthesized and characterized by elemental analyses, FAB (fast atomic bombardment) magnetic measurements, electronic absorption, conductivity measurements cyclic voltammetry (CV) and Electron paramagnetic resonance (epr) spectroscopy. The structures of these complexes determined by single crystal X-ray crystallography show a distorted square based pyramidal (DSBP) geometry around copper(II) metal center. The distorted CuN2OX (X = Cl/Br) basal plane in them is comprised of two nitrogen and one oxygen atoms of the meridionally coordinated ligand and a chloride or bromide ion and axial position is occupied by other halide ion. The epr spectra of these complexes in frozen solutions of DMSO showed a signal at g ca. 2. The trend in g-value (g|| > g > 2.00) suggest that the unpaired electron on copper(II) has dx2-y2 character. Biological activities in terms of superoxide dismutase (SOD) and antimicrobial properties of copper(II) complexes have also been measured. The superoxide dismutase activity reveals that these two complexes catalyze the fast disproportionation of superoxide in DMSO solution.  相似文献   

20.
The single-crystal and polycrystalline powder EPR spectra of the trinuclear compound [L3Cu3(Im)3](ClO4)3, L = 1,4,7-trimethyl-1,4,7-triazacyclononane, and Im = imidazolate, have been measured in the temperature range 4.2–300 K. The spectra are explained based on the spin-frustration, the low symmetry, and the intercluster exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号