首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

2.
The inhibition of guinea-pig heart (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) by calcium has been studied at pH 7.4, 6.8 and 6.4. 1. A decrease in pH reduced the threshold inhibitory concentration of calcium and the calcium concentration producing an inhibition of 50% of the enzyme activity. 2. Calcium reduced the apparent affinity of the enzyme of Na+, this effect occurred only at pH 7.4. 3. Calcium increased the apparent affinity of the enzyme for K+, this effect was enhanced at acidic pH. 4. Activation of the enzyme by Na+ for a constant Na+ : K+ ratio has been studied at pH 7.4 and at pH 6.8 in the absence and in the presence of 3.10(-4) M Ca 2+; the results of this experiment indicate that Ca2+ effect at pH 7.4 was not influenced by Na+ -- K+ competition and was probably due to a Na+ -- Ca2+ interaction. 5. At pH 7.4, the calcium inhibitory threshold concentration and the concentration producing 50% inhibition were reduced when Na+ was low; at pH 6.8, the calcium inhibition was not markedly modified by the change of Na+ concentration. 6. The Ca2+ -activated ATPase of myosin B which is related to the contractile behaviour of muscle and the Ca2+ -ATPase of the sarcoplasmic reticulum which is related to the ability of this structure to accumulate calcium were activated in a range of calcium concentration producing an inhibition of (Na2+ + K+) -ATPase. The present results indicate that the increase by acidity of the (Na2+ + K+) -ATPase sensitivity to calcium might be due to a suppression of a Na+ -Ca2+ interaction. On the basis of these observations, it is proposed that calcium might inhibit the Na+ -pump during the repolarization phase of the action potential and that, by this effect, it might control cell excitability.  相似文献   

3.
Inactivation of Na+, K+ -ATPase from cattle brain by sodium fluoride   总被引:3,自引:0,他引:3  
The influence of the physiological ligands and modifiers on the plasma membrane Na+, K+ -ATPase from calf brain inactivation by sodium fluoride (NaF) is studied. ATP-hydrolyzing activity of the enzyme was found to be more stable as to NaF inhibition than its K+ -pNPPase activity. The activatory ions of Na+, K+ -ATPase have different effects on the process of the enzyme inhibition by NaF. K+ intensifies inhibition, but Na+ does not affect it. An increase of [Mg2+free] in the incubation medium (from 0.5 to 3.0 mM) rises the sensitivity of Na+, K+ -ATPase to NaF inhibition. But an increase of [ATP] from 0.3 to 1.5 mM has no effect on this process. Ca and Mg ions modify Na+, K+ -ATPase inhibition by fluoride differently. Ca2+free levels this process, and Mg2+free on the contrary increases it. In the presence of Ca ions and in the neutral-alkaline medium (pH 7.0-8.5) the recovery of activity of the transport ATPase inhibited by-NaF takes place. Sodium citrate also protects both ATP-hydrolizing and K-pNPPase activity of the Na+, K+ -ATPase from NaF inhibition. Under the modifing membranous effects (the treatment of plasma membranes by Ds-Na and digitonin) the partial loss of Na+, K+ -ATPase sensitivity to NaF inhibition is observed. It is concluded that Na+, K+ -ATPase inactivation by NaF depends on the influence of the physiological ligands and modifiers as well as on the integrity of membrane structure.  相似文献   

4.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

5.
Effects of ATP, acetyl phosphate (AcP) and p-nitrophenyl phosphate (p-NPP) on the inhibition of the Na+, K+-ATPase activity were studied. ATP, AcP and p-NPP were found to facilitate the ouabain-induced inhibition of the enzyme activity only after the injection of these phosphorylyzing agents into the erythrocyte ghosts. Inside the ghosts Na+ ions enhanced the effects of the phosphorylyzing agents. K+ ions in the environment removed the stimulating effects of ATP, AcP and p-NPP on the ouabain-induced inhibition of Na+, K+-ATPase activity. It is concluded that the sites of AcP and p-NPP hydrolysis as well as the active center for ATP are localized on the inner surface of the cell membrane.  相似文献   

6.
Charge translocation by Na(+),K(+)-ATPase was investigated by adsorbing membrane fragments containing Na(+),K(+)-ATPase from pig kidney on a solid supported membrane (SSM). Upon adsorption, the ion pumps were activated by performing ATP concentration jumps at the surface of the SSM, and the capacitive current transients generated by Na(+),K(+)-ATPase were measured under potentiostatic conditions. To study the behavior of the ion pump under multiple turnover conditions, ATP concentration jump experiments were carried out in the presence of Na(+) and K(+) ions. Current transients induced by ATP concentration jumps were also recorded in the presence of the enzyme alpha-chymotrypsin. The effect of acylphosphatase (AcP), a cytosolic enzyme that may affect the functioning of Na(+),K(+)-ATPase by hydrolyzing its acylphosphorylated intermediate, was investigated by performing ATP concentration jumps both in the presence and in the absence of AcP. In the presence of Na(+) but not of K(+), the addition of AcP causes the charge translocated as a consequence of ATP concentration jumps to decrease by about 50% over the pH range from 6 to 7, and to increase by about 20% at pH 8. Conversely, no appreciable effect of pH upon the translocated charge is observed in the absence of AcP. The above behavior suggests that protons are involved in the AcP-catalyzed dephosphorylation of the acylphosphorylated intermediate of Na(+),K(+)-ATPase.  相似文献   

7.
The activity of the Na+-K+-ATPase along the intestinal mucosa of the gilthead seabream has been examined. Under optimal assay conditions, found at 35 degrees C, pH 7.5, 2-5 mM MgCl2, 5 mM ATP, 10 mM K+ and 200 mM Na+, maximal Na+-K+-ATPase activities were found in the microsomal fraction of pyloric caeca (PC) and anterior intestine (AI), which were more than two-fold the activity measured in the microsomes from the posterior intestine (PI). Na+-K+-ATPase activities from PC, AI and PI displayed similar pH dependence, optimal Mg2+/ATP and Na+/K+ ratios, affinities for Mg2+ and ATP, and inhibition by vanadate. However, considerable differences regarding sensitivity to ouabain, inhibition by calcium and responses to ionic strength were observed between segments. Thus, Na+-K+-ATPase activity from the AI was found to be ten-fold more sensitive to ouabain and calcium than the enzyme from the PC and PI and displayed distinct kinetic behaviours with respect to Na+ and K+, compared to PC and PI. Analysis of the data from the AI revealed the presence of two Na+-K+-ATPase activities endowed with distinguishable biochemical characteristics, suggesting the involvement of two different isozymes. Regional differences in Na+-K+-ATPase activities in the intestine of the gilthead seabream are compared with literature data on Na+-K+-ATPase isozymes and discussed on the basis of the physiological differences between intestinal regions.  相似文献   

8.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

9.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

10.
B Vilsen 《Biochemistry》1999,38(35):11389-11400
Mutant Phe788 --> Leu of the rat kidney Na+,K(+)-ATPase was expressed in COS cells to active-site concentrations between 40 and 60 pmol/mg of membrane protein. Analysis of the functional properties showed that the discrimination between Na+ and K+ on the two sides of the system is severely impaired in the mutant. Micromolar concentrations of K+ inhibited ATP hydrolysis (K(0.5) for inhibition 107 microM for the mutant versus 76 mM for the wild-type at 20 mM Na+), and at 20 mM K+, the molecular turnover number for Na+,K(+)-ATPase activity was reduced to 11% that of the wild-type. This inhibition was counteracted by Na+ in high concentrations, and in the total absence of K+, the mutant catalyzed Na(+)-activated ATP hydrolysis ("Na(+)-ATPase activity") at an extraordinary high rate corresponding to 86% of the maximal Na+,K(+)-ATPase activity. The high Na(+)-ATPase activity was accounted for by an increased rate of K(+)-independent dephosphorylation. Already at 2 mM Na+, the dephosphorylation rate of the mutant was 8-fold higher than that of the wild-type, and the maximal rate of Na(+)-induced dephosphorylation amounted to 61% of the rate of K(+)-induced dephosphorylation. The cause of the inhibitory effect of K+ on ATP hydrolysis in the mutant was an unusual stability of the K(+)-occluded E2(K2) form. Hence, when E2(K2) was formed by K+ binding to unphosphorylated enzyme, the K(0.5) for K+ occlusion was close to 1 microM in the mutant versus 100 microM in the wild-type. In the presence of 100 mM Na+ to compete with K+ binding, the K(0.5) for K+ occlusion was still 100-fold lower in the mutant than in the wild-type. Moreover, relative to the wild-type, the mutant exhibited a 6-7-fold reduced rate of release of occluded K+, a 3-4-fold increased apparent K+ affinity in activation of the pNPPase reaction, a 10-11-fold lower apparent ATP affinity in the Na+,K(+)-ATPase assay with 250 microM K+ present (increased K(+)-ATP antagonism), and an 8-fold reduced apparent ouabain affinity (increased K(+)-ouabain antagonism).  相似文献   

11.
The Kd for ouabain for inhibition of Na+,K+-ATPase isolated from murine plasmocytoma MOPC 173 cells is 120 microM, but when isolated in the presence of EDTA, it is 100-fold lower (1.2 microM). Simultaneous addition of muscle tropomyosin and calcium to sensitive membranes restored the original insensitivity (tropomyosin bound to the membranes in an irreversible and saturable manner). For comparison 86Rb influx into intact cells, mediated by the Na+,K+-pump, is half-maximally inhibited at 50 microM ouabain. Calcium converts the enzyme to an insensitive form. This appeared to involve calmodulin because after extraction of calmodulin with EDTA and EGTA from sensitive membranes, they could not be made insensitive by the addition of tropomyosin and Ca2+. Addition of exogenous calmodulin to these calmodulin-depleted membranes was required, in addition to tropomyosin and Ca2+, to decrease the ouabain sensitivity. The involvement of calmodulin was further assessed by measuring the range of Ca2+ concentrations required to convert to the insensitive form. At saturating concentrations of tropomyosin, increasing free [Ca2+] up to 3 microM led to an heterogeneous population of Na+,K+-ATPase forms. The calcium dependency was a saturable process. The shift to the insensitive form was half maximal at 0.65 + 0.11 microM free Ca2+ and was abolished by the addition of troponin I or trifluoroperazine (0.1 mM). These results suggest that, in murine plasmocytoma cells, the intrinsic sensitivity of Na+,K+-ATPase to ouabain might be regulated by a calmodulin-dependent process within a submembrane contractile-like environment.  相似文献   

12.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

13.
S. cervi showed particulate bound Ca2+ ATPase and Na+,K(+)-ATPase activities while Mg2+ ATPase was detected in traces. ATPase of S. cervi was also differentiated from the nonspecific p-nitrophenyl phosphatase activity. Female parasite and microfilariae exhibited higher Ca2+ ATPase and Na+,K(+)-ATPase activities than the male adults and the enzyme Na+,K(+)-ATPase was mainly concentrated in the gastrointestinal tract of the filarial parasite. Na+,K(+)-ATPase of the filariid was ouabain-sensitive while Ca2(+)-ATPase activity was regulated by concentration of Ca2+ ions and inhibited by EGTA. Phenothiazines, viz. trifluoperazine, promethazine and chlorpromazine caused significant inhibition of Ca2+ ATPase and Na+,K(+)-ATPase. Diethylcarbamazine was a potent inhibitor of these ATPases. Mebendazole, levamisole and centperazine also caused significant inhibition of the ATPases indicating this enzyme system as a common target for the action of anthelmintic drugs.  相似文献   

14.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

15.
Vanadate is able to promote the binding of ouabain to (Na+ +K+)-ATPase and it is shown that vanadate is trapped in the enzyme-ouabain complex. Also ouabain-bound enzyme, the formation of which was facilitated by (Mg2+ +Na+ +ATP) or (Mg2+ +Pi), is accessible to vanadate when washed free of competing ligands used for the promotion of ouabain binding. For vanadate binding to (Na+ +K+)-ATPase and to enzyme-ouabain complexes a divalent cation (Mg2+ or Mn2+) is indispensable, indicating that the cation does not remain attached to the ouabain-bound enzyme. K+ further increases vanadate binding in the absence of ouabain, but seems to have no additional role in case of vanadate binding to enzyme-ouabain complexes. Mn2+ is more efficient than Mg2+ in promoting binding of vanadate and ouabain to (Na+ +K+)-ATPase. That K+ in combination with Mn2+, in analogy with the effect in combination with Mg2+, increases the equilibrium binding level of vanadate and decreases that of ouabain does not seem to favour the hypothesis of selection of a special E2-subconformation by Mn2+. The vanadate-trapped enzyme-ouabain complex was examined for simultaneous nucleotide binding which could demonstrate a two-substrate mechanism per functional unit of the enzyme. The acceleration by (Na+ +ATP) of ouabain release from the (Mg2+ +Pi)-facilitated enzyme-ouabain complex does not, as anticipated, support such a mechanism. On the other hand, the deceleration of vanadate release as well as of ouabain release from a (Mg2+ +vanadate)-promoted complex could be consistent with a two-substrate mechanism working out-of-phase.  相似文献   

16.
A high-affinity calcium-dependent ATPase (Ca2+-ATPase) was identified in a crude plasma membrane fraction from Entamoeba invadens (IP-1 strain). The Ca2+-ATPase activity was solubilized from the membrane by utilizing the non-ionic detergent octylglucoside. The activity had an apparent half maximal saturation constant of 0.4 +/- 0.05 microM for free calcium. The calcium activation of ATPase activity followed a cooperative mechanism (Hill number of 2.3 +/- 0.13) which suggests that two interacting sites were involved. The high-affinity Ca2+-ATPase appeared to be magnesium-independent, since by lowering contaminant free magnesium with trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid did not modify the activity observed with Ca2+. The apparent Km of the enzyme for ATP was 31 microM. The observed activity had an optimum pH of 8.8. The enzyme was insensitive to various agents such as Na+, K+, ouabain, dicyclohexylcarbodiimide, KCN, NaN3, mersalyl, quercetin, ruthenium red and vanadate. Only lanthanum (0.5 mM) inhibited 100% the enzymatic activity. Calmodulin and trifluoperazine at the concentrations tested did not modify the Ca2+-ATPase activity.  相似文献   

17.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

18.
B Vilsen 《FEBS letters》1992,314(3):301-307
Site-specific mutagenesis was used to analyse the functional roles of the residues Pro328 and Leu332 located in the conserved PEGLL motif of the predicted transmembrane helix M4 in the alpha 1-subunit of the ouabain resistant rat kidney Na+,K(+)-ATPase. cDNAs encoding either of the Na+,K(+)-ATPase mutants Pro328-->Ala and Leu332-->Ala, and wild type, were cloned into the expression vector pMT2 and transfected into COS-1 cells. Ouabain-resistant clones growing in the presence of 10 microM ouabain were isolated, and the Na+,K+, ATP and pH dependencies of the Na+,K(+)-ATPase activity measured in the presence of 10 microM ouabain were analysed. Under these conditions the exogenous expressed Na+,K(+)-ATPase contributed more than 95% of the Na+,K(+)-ATPase activity. The Pro328-->Ala mutant displayed a reduced apparent affinity for Na+ (K0.5 (Na+) 13.04 mM), relative to the wild type (K0.5 (Na+) 7.13 mM). By contrast, the apparent affinity for Na+ displayed by the Leu332-->Ala mutant was increased (K0.5 (Na+) 3.92 mM). Either of the mutants exhibited lower apparent affinity for K+ relative to the wild type (K0.5 (K+) 2.46 mM for Pro328-->Ala and 1.97 mM for Leu332-->Ala, compared with 0.78 mM for wild type). Both mutants exhibited higher apparent affinity for ATP than the wild type (K0.5 (ATP) 0.086 mM for Pro328-->Ala and 0.042 mM for Leu332-->Ala, compared with 0.287 mM for wild type). The influence of pH was in accordance with an acceleration of the E2 (K)-->E1 transition in the mutants relative to the wild type. These data are consistent with a role of Pro328 and Leu332 in the stabilization of the E2 form and of Pro328 in Na+ binding. The possible role of the mutated residues in K+ binding is discussed.  相似文献   

19.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

20.
The photochemical release of Ca2+ from caged-Ca2+ in the absence of ATP, and the release of ATP from caged-ATP in the presence of Ca2+ induce characteristic difference FTIR spectra on rabbit sarcoplasmic reticulum that are related to the formation of Ca2-E1 and E approximately P intermediates of the Ca(2+)-ATPase, respectively. Dicyclohexylcarbodiimide (10 nmol/mg protein) abolished both the Ca(2+)-and ATP-induced difference FTIR spectra parallel with inhibition of ATPase activity. Cyclopiazonic acid (50 nmol/mg protein) inhibited the Ca(2+)-induced difference spectrum measured in the absence of ATP, but had no significant effect on the ATP-induced difference spectrum measured in the presence of 1 mM Ca2+. The dog kidney Na+,K(+)-ATPase did not give significant difference spectrum after photolysis of caged-ATP in Ca(2+)-free media containing 90 mM Na+ and 10 mM K+, with or without ouabain. We propose that both the Ca2+ and the ATP-induced difference FTIR spectra of the Ca(2+)-ATPase reflect the occupancy of the high-affinity Ca2+ transport site of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号