首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Some Reactions of Isolated Corn Mitochondria Influenced by Juglone   总被引:1,自引:0,他引:1  
The effects of juglone on the uptake of O2 by excised corn roots (Zea mays L., Wf9 cms- T × M14) and isolated corn mitochondria arc reported. The O2 uptake by excised corn roots, as measured by an O2 electrode, was inhibited more than 90% after a one-hour treatment of 500 μM juglone. Lesser inhibitions were observed with 50 μM and 250 μM juglone. In a KC1 reaction medium in the absence of inorganic phosphate (Pi), juglone stimulated the rate of O2 uptake by isolated mitochondria oxidizing NADH, succinate, or malate + pyruvate. In the presence of Pi, juglone concentrations of 3 μM and greater inhibited the state 3 oxidation rates of succinate and malate + pyruvate, lowered respiratory control and ADP/O ratios obtained from the oxidation of NADH, malate + pyruvate, or succinate, and reduced the coupled deposition of calcium phosphate within isolated mitochondria driven, by the oxidation of malate + pyruvate. The inhibition of state 3 O2 uptake by isolated mitochondria, an oxidative state in which electron transfer is coupled to ATP production, is seen to correlate with the inhibition affected by juglone when applied to tissues in vivo.  相似文献   

2.
The effects of cadmium on isolated corn shoot mitochondria were determined. In the absence of phosphate cadmium stimulated the oxidation of exogenous NADH optimally at 0.025 mM, but was inhibitory at 0.1 mM and above. The presence of phosphate negated the cadmium stimulation of exogenous NADH oxidation and permitted inhibitions only at higher cadmium concentrations. Succinate or malate + pyruvate oxidation in the absence of phosphate was inhibited to a greater extent by cadmium than when phosphate was present. ADP/O and respiratory control ratios were reduced by cadmium but generally were less sensitive to cadmium than state 4 or minus phosphate respiration. The data suggest that the site of cadmium effect is likely to be early in electron transport. Cadmium had a pronounced effect on mitochondrial swelling under either passive or active conditions. When succinate or exogenous NADH were being oxidized swelling occurred at 0.05 mM cadmium, but with malate + pyruvate the cadmium concentration had to exceed 1.0 mM. Phosphate (2 mM) prevented the swelling. Dithiothreitol, a SH group protector, prevented any effect of cadmium on swelling or respiration which suggests that sulfhydryl groups are likely involved in the cadmium-membrane interaction.  相似文献   

3.
Glutamate metabolism triggered by oxaloacetate in intact plant mitochondria   总被引:6,自引:0,他引:6  
In Percoll-purified potato tuber mitochondria, glutamate metabolism can be triggered by oxaloacetate, in the presence of ADP and thiamine pyrophosphate. There is a lag phase before O2 uptake is initiated. During this lag period, oxaloacetate is rapidly converted into α-ketoglutarate and succinate, or into malate at the expense of the NADH generated by α-ketoglutarate dehydrogenase. The ratio of the flux rates of both pathways is strongly dependent on the glutamate concentration in the medium. When all the oxaloacetate is consumed, a rapid O2 uptake is initiated. The effects of malonate on glutamate metabolism triggered by oxaloacetate and on α-ketoglutarate oxidation are reported. It is concluded that the inhibition of the succinate dehydrogenase by either malonate or oxaloacetate does not affect the rate of α-ketoglutarate dehydrogenase functioning. All the metabolites accumulated are excreted by the mitochondria in the supernatant. Some of them are then reabsorbed. These results emphasize the importance of the anion carriers in the overall process.  相似文献   

4.
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors.  相似文献   

5.
The mechanisms and accurate control of citrate oxidation by Percoll-purified potato (Solanum tuberosum) tuber mitochondria were characterized in various metabolic conditions by recording time course evolution of the citric acid cycle related intermediates and O2 consumption. Intact potato tuber mitochondria showed good rates of citrate oxidation, provided that nonlimiting amounts of NAD+ and thiamine pyrophosphate were present in the matrix space. Addition of ATP increased initial oxidation rates, by activation of the energy-dependent net citrate uptake, and stimulated succinate and malate formation. When the intramitochondrial NADH to NAD+ ratio was high, α-ketoglutarate only was excreted from the matrix space. After addition of ADP, aspartate, or oxaloacetate, which decreased the NADH to NAD+ ratio, flux rates through the Krebs cycle dehydrogenases were strongly increased and α-ketoglutarate, succinate, and malate accumulated up to steady-state concentrations in the reaction medium. It was concluded that NADH to NAD+ ratio could be the primary signal for coordination of fluxes through electron transport chain or malate dehydrogenase and NAD+-linked Krebs cycle dehydrogenases. In addition, these results clearly showed that the tricarboxylic acid cycle could serve as an important source of carbon skeletons for extra-mitochondrial synthetic processes, according to supply and demand of metabolites.  相似文献   

6.
A procedure is described for preparing intact mitochondria from leaves of Sedum praealtum D.C., a plant showing Crassulacean acid metabolism. These mitochondria oxidized malate, pyruvate, α-ketoglutarate, succinate, NADH, NADPH, and isocitrate with good respiratory control and ADP/O ratios better than those observed in mitochondria from other photosynthetic tissues.  相似文献   

7.
The fungicide zinc dimethyldithiocarbamate (ziram) is a sulfhydryl reagent which inhibits specifically the growth of the yeast Saccharomyces cerevisiae on nonfermentable substrates. In isolated mitochondria, the uncoupled as well as the state 3 oxidations of succinate, α-ketoglutarate, ethanol, and malate plus pyruvate are sensitive to ziram concentrations of 10 to 30 μm. The oxidations of isocitrate, of external NADH, of α-glycerophosphate, and of ascorbate plus tetramethylphenylenediamine exhibit a lower sensitivity to ziram. Succinate, α-ketoglutarate, and pyruvate dehydrogenases activities are 50% inhibited by concentration of ziram lower than 10 μm. At the same concentrations, neither the mitochondrial transports of succinate, ADP, or phosphate nor oxidative phosphorylation and adenosine triphosphatase activities are modified. The kinetic study of the inhibition by ziram of succinate dehydrogenase activity shows that ziram is noncompetitive with succinate and produces sigmoidal inhibitions of state 3 and of uncoupled oxidation of succinate by intact mitochondria. Inhibition of succinate:phenazine methosulfate oxidoreductase activity yields exponential kinetics. However sigmoidal-type inhibition is observed when succinate dehydrogenase activity is stimulated by ATP.  相似文献   

8.
Beffa, T., Pezet, R. and Turian, G. 1987. Multiple-site inhibition by colloidal elemental sulfur (S°) of respiration by mitochondria from young dormant α spores of Phomopsis viticola. Mitochondria from young dormant α spores of Phomopsis viticola Sacc. (ATCC 44940) were isolated by grinding and differential centrifugation. They presented a good integrity of their inner and outer membranes as measured by biochemical assays. Electron microscopic analysis revealed an homogenous population. The highest respiratory activities were observed with NADH and ascorbate + tetra-methyl-p-phenylenediamine (TMPD). Malate stimulated the oxidation of pyruvate, citrate or α-ketoglutarate. The coupling of respiration to oxidative phosphorylation appeared at the time of spore germination. The respiratory activities of mitochondria isolated from young dormant α spores of P. viticola were strongly inhibited by S°. The sensitivity of mitochondrial oxidation of different substrates (NADH, pyruvate + malate, succinate and ascorbate + TMPD) to S° was heterogenous and indicated multiple-site action. Thus preincubation of mitochondria with 30 μM S° before addition of substrates fully prevented NADH oxidation (>98%), and strongly inhibited oxidation of pyruvate + malate (85%), succinate (60%) and ascorbate + TMPD (74%). S° inhibited more rapidly the oxidation of succinate than that of other substrates. In the presence of dithiothreitol (DTT), S°-inhibited oxidation of all substrates (except ascorbate + TMPD) could only be transiently and weakly reestablished. The inhibitory action of S° on the oxidation of NADH, pyruvate + malate and succinate was higher than that observed with sulfhydryl group reagents such as mersalyl, Hg-acetate or p - chloromercuribenzoate. In contrast to S° these SH-group reagents could not inhibit oxidation of ascorbate + TMPD. S°, by its dual capacity to oxidize the SH-groups and to self-reduce, probably at the level of cytochrome c oxidase, could produce a modification of the oxidation state of the respiratory complexes thereby disturbing the electron flux.  相似文献   

9.
The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cv. Hawkeye) with 9–12 μg × m?3 HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from the etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). The results are discussed with respect to possible effects of fluoride on mitochondrial membranes.  相似文献   

10.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

11.
Day DA  Hanson JB 《Plant physiology》1977,59(2):139-144
A study was made to determine conditions under which malate oxidation rates in corn (Zea mays L.) mitochondria are limited by transport processes. In the absence of added ADP, inorganic phosphate increased malate oxidation rates by processes inhibited by mersalyl and oligomycin, but phosphate did not stimulate uncoupled respiration. However, the uncoupled oxidation rates were inhibited by butylmalonate and mersalyl. When uncoupler was added prior to substrate, subsequent O2 uptake rates were reduced when malate and succinate, but not exogenous NADH, were used. Uncoupler and butylmalonate also inhibited swelling in malate solutions and malate accumulation by these mitochondria, which were found to have a high endogenous phosphate content. Addition of uncoupler after malate or succinate produced an initial rapid oxidation which declined as the mitochondria lost solute and contracted. This decline was not affected by addition of ADP or AMP, and was not observed when exogenous NADH was substrate. Increasing K+ permeability with valinomycin increased the P-trifluoromethoxy (carboxylcyanide)phenyl hydrazone inhibition. Kinetic studies showed the slow rate of malate oxidation in the presence of uncoupler to be characterized by a high Km and a low Vmax, probably reflecting a diffusion-limited process.  相似文献   

12.
Effects of rotenoids on isolated plant mitochondria   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of several rotenoids have been studied on potato (Solanum tuberosum L.) tuber and etiolated mung bean (Phaseolus aureus Roxb.) hypocotyls mitochondria. The selective inhibition of mitochondrial complex I is characterized by several tests: (a) no effect can be observed on exogenous NADH or succinate oxidation; (b) malate oxidation is inhibited at pH 7.5; (c) one-third decrease of ADP/O ratio appears during malate oxidation at pH 6.5 or during α-ketoglutarate, citrate, or pyruvate oxidation at a pH about 7; (d) during malate oxidation at pH 6.5, a transient inhibition appears which can be maintained by addition of exogenous oxaloacetate; (e) in potato mitochondria, the inhibition of malate oxidation disappears at pH 6.5 when NAD+ is added. Then, a one-third decrease of the ADP/O ratio can be measured.

Such a selective inhibition of complex I is obtained with deguelin, tephrosin, elliptone, OH-12 rotenone, and almost all the rotenoids extracted from Derris roots. The presence of the rings A, B, C, D, E seems to be necessary for the selective inhibition. Opening of the E ring and hydroxylation of the 9 position (rot-2′-enoic acid) give a rotenoid derivative with multisite inhibitory activities on flavoproteins, which are quite comparable to those of common flavonoids such as kaempferol (Ravanel et al. 1982 Plant Physiol 69: 375-378).

  相似文献   

13.
The coupling and uncoupling properties of isolated corn mitochondria were analyzed using three substrates in Tris buffered sucrose and KC1 reaction medias containing inorganic phosphate (Pi), bovine serum albumin (BSA), or Pi and BSA. In these media, without other cofactors, respiratory control (RCR) and ADP/O ratios, and the respiratory burst affected by dinitrophenol (DNP), gramicidin D, calcium chloride and ADP were measured. Bovine serum albumin enhanced the respiratory burst caused by DNP and gramicidin D in the absence of Pi, and in most instances enhanced the stimulation of oxygen uptake by ADP and calcium chloride in the presence of Pi. Mitochondria oxidizing succinate, malate-pyruvate or NADH exhibited better RCR and ADP/O ratios in buffered 200 mM KCl than they did in buffered 300 mM sucrose. In all instances RCR and ADP/O ratios were enhanced in reaction medias containing BSA.  相似文献   

14.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

15.
The passive sorption of Pb+2, Cd+2, Zn+2, Co+2, Ni+2, and Mn+2 by isolated corn mitochondria was determined, and, except for Pb+2, the maximum sorption for each cation was about 58 nmol per milligram of protein. Sorption of Pb+2 was apparently ten times greater, but precipitation may have been the cause of this larger value. The effects of Pb+2, Cd+2, Zn+2, Co+2, and Ni+2 on acceptorless rates of electron transport for three substrates were determined. Greater than 50% inhibitions of oxidation were observed for succinate after additions of >0.1 mM Cd+2, Zn+2, or Pb+2: for NADH after additions of >0.5 mM Cd+2 or Zn+2; and for malate + pyruvate after additions of >0.1 mM Cd+2. Some inhibition of the rate of substrate oxidation was observed for most cations at higher concentrations. Coupling, as measured by ADP/O ratios, was inhibited at lowest concentrations by Cd+2 or Zn+2 and at higher concentrations by Co+2 or Ni+2. Substantial swelling of mitochondria oxidizing succinate was observed following additions of O.1 mM Cd+2 or Pb+2, Correlations are drawn between the effects of Pb+2, Cd+2, Zn+2, Co+2, and Ni+2 and their sorption to mitochondrial membranes.  相似文献   

16.
Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate (+ proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 μm) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled α-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (>99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 μm), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 ± 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mm. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, α-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the mitochondrial NAD+-linked isocitric dehydrogenase is a major site for such control through the tricarboxylate cycle.  相似文献   

17.
Exogenous NADH oxidation by cauliflower (Brassica oleracea L.) bud mitochondria was sensitive to antimycin A and gave ADP/O ratios of 1.4 to 1.9. In intact mitochondria, NADH-cytochrome c reductase activity was only slightly inhibited by antimycin A. The antimycin-insensitive activity was associated with the outer membrane. Malate oxidation was sensitive to both rotenone and antimycin A and gave ADP/O values of 2.4 to 2.9. However in the presence of added NAD+, malate oxidation displayed similar properties to exogenous NADH oxidation. In both the presence and absence of added NAD+, malate oxidation was dependent on inorganic phosphate and inhibited by 2-n-butyl malonate.  相似文献   

18.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

19.
Osmotic shock was found to be better than freezing and thawing, a French press, or sonic oscillation for the preparation of submitochondrial particles from mung bean (Phaseolus aureus) hypocotyl mitochondria. Particles prepared by osmotic shock rapidly oxidize reduced nicotinamide adenine dinucleotide and succinate, but they oxidize malate slowly. NADH oxidation was slightly stimulated by cytochrome c, ATP, and ADP; succinate oxidation was markedly increased by ATP, slightly by ADP and cytochrome c; and malate oxidation required the addition of NAD+ NADH oxidation is inhibited weakly by amytal, completely by antimycin A and KCN, but not by rotenone. Chlorsuccinate, malonate, antimycin A, and KCN inhibit succinate oxidation. The action of antimycin A and KCN is incomplete, while chlorsuccinate and malonate were competitive inhibitors. Antimycin A combined stoichiometrically with particle protein in the ratio of 0.23 millimicromole per milligram of protein.  相似文献   

20.
  1. Succinate dehydrogenase is inhibited by citrate and β-hydroxybutyrate in a complex manner, both in mitochondria and submitochondrial particles. Kinetics of inhibition in the particles points to a competitive component in the mechanism involved.
  2. Pyruvate, α-ketoglutarate, malate, and glutamate stimulate oxidation of succinate by mitochondria.
  3. Stimulation by α-ketoglutarate and glutamate is not influenced by the presence of rotenone.
  4. Stimulation by pyruvate is higher in the absence of rotenone and increases significantly in the presence of K+ and valinomycin. Pyruvate supplies in mitochondria reducing equivalents for malate dehydrogenase operating in the reverse direction-reduction of oxaloacetate to malate.
  5. Stimulation by malate is higher in the presence of rotenone.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号