首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
He  Zheng-Hui  Cheeseman  Iain  He  Deze  Kohorn  Bruce D. 《Plant molecular biology》1999,39(6):1189-1196
WAK1 (wall-associated kinase 1) is a cytoplasmic serine/threonine kinase that spans the plasma membrane and extends into the extracellular region to bind tightly to the cell wall. The Wak1 gene was mapped and found to lie in a tight cluster of five highly similar genes (Wak1–5) within a 30 kb region. All of the Wak genes encode a cytoplasmic serine/threonine protein kinase, a transmembrane domain, and an extracytoplasmic region with several epidermal growth factor (EGF) repeats. The extracellular regions also contain limited amino acid identities to the tenascin superfamily, collagen, or the neurexins. RNA blot analysis with gene-specific probes revealed that Wak1, Wak3 and Wak5 are expressed primarily in leaves and stems of Arabidopsis. Wak4 mRNA is only detected in siliques, while Wak2 mRNA is found in high levels in leaves and stems, and in lower levels in flowers and siliques. A trace amount of Wak2 can also be detected in roots. Wak1 is induced by pathogen infection and salicylic acid or its analogue INA and is involved in the plant's response, and Wak2, Wak3 and Wak5 also can be greatly induced by salicylic acid or INA. The WAK proteins have the potential to serve as both linkers of the cell wall to the plasma membrane and as signaling molecules, and since Wak expression is organ-specific and the isoforms vary significantly in the cell wall associated domain this family of proteins may be involved in cell wall-plasma membrane interactions that direct fundamental processes in angiosperms.  相似文献   

2.
Despite the large number of receptor-like kinases (RLKs) in plants, few of their specific ligands are known. Ligand fishing is one of the most challenging post-genomic technologies. Here, we report a strategy for functional immobilization of plant RLKs on microbeads via covalent linkage. Because of the high density of immobilized RLKs, ligand-receptor interaction can be visualized at high sensitivity using fluorescent-labeled ligands under the confocal laser scanning microscope. Moreover, using a receptor-based affinity chromatography system with RLK microbeads, the ligand of the receptor was directly retrieved at high purity from complex natural samples. Our RLK microbeads and receptor-based ligand fishing approach is a feasible alternative to conventional forward genetics and bioassay-based biochemical purification for identification of novel ligand-receptor pairs in plants.  相似文献   

3.
In higher plants, an outer layer of meristematic cells, the protoderm, forms early in embryogenesis and this layer gives rise to the epidermis in differentiating tissues. We proposed previously that an Arabidopsis thaliana homolog of crinkly4 (ACR4), a gene for a receptor-like protein kinase, would be involved in differentiation and/or maintenance of epidermis-related tissues. In the present study, we isolated loss-of-function acr4 mutants by a reverse genetic approach. Our extensive analyses using the transmission electron microscopy and the toluidine blue test -- a method that has recently been developed for the rapid visualization of defects in the leaf cuticle -- showed that the acr4 mutations significantly affected the differentiation of leaf epidermal cells, suggesting similar roles for ACR4 and CR4 in the differentiation of leaf epidermis. Our acr4 mutants also had various abnormalities related to epidermal differentiation, which included disorganized cell layers in the integument and endothelium of ovules. In addition, the green fluorescent protein fused to ACR4 was localized preferentially on the lateral and basal plasma membranes in the epidermis of the leaf primordia, suggesting a role for ACR4 in epidermal differentiation at cell surfaces that make contact with adjacent cells. Furthermore, the loss-of-function mutations in the ACR4 and ABNORMAL LEAF SHAPE1 (ALE1) genes, which encode a putative subtilisin-like serine protease, synergistically affected the function of the epidermis such that most leaves fused. Thus, ACR4 seems to play an essential role in the differentiation of proper epidermal cells in both vegetative and reproductive tissues.  相似文献   

4.
5.
Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina is complex and depends on the ethylene, jasmonic acid and salicylic acid signaling pathways. A quantitative trait loci (QTL) analysis of resistance to this fungus was performed using two populations of recombinant inbred lines. Three loci QRP1-QRP3 (for Quantitative Resistance to Plectosphaerella) were identified and mapped on chromosome 2 (QRP1 and QRP2) and 5 (QRP3). QRP1, the locus showing the strongest effect, was found to correspond to the ERECTA (ER) gene that encodes a receptor-like-kinase (RLK), which has been previously implicated in plant development, and resistance to the bacterium Ralstonia solanacearum. The leucine-rich repeat and the kinase domains of ERECTA were specifically required for resistance to P. cucumerina, as er mutant alleles impaired in any of these domains showed enhanced susceptibility to this fungus, but not to other virulent pathogens. The involvement of the ER-signaling pathway in resistance to P. cucumerina was supported by the fact that three mutants defective in this pathway, elk2, elk5 and elk4 (agb1-1), which encodes the beta-subunit of Arabidopsis heterotrimeric G protein, were also impaired in their resistance to this fungus. The putative function of the Arabidopsis heterotrimeric G protein in resistance to P. cucumerina suggested by the enhanced susceptibility of agb1-1 was corroborated by the demonstration that a null allele (gpa1-4) of the G protein alpha-subunit showed enhanced resistance to this pathogen. Deposition of beta-1,3-glucan callose at infection sites was specifically impaired in er-1 and agb1-1 mutants upon P. cucumerina inoculation. Taken together, these data suggest a putative function of ERECTA and heterotrimeric G protein in P. cucumerina perception.  相似文献   

6.
We previously characterized LePRK1 and LePRK2, pollen-specific receptor kinases from tomato (Muschietti et al., 1998). Here we identify a similar receptor kinase from maize, ZmPRK1, that is also specifically expressed late in pollen development, and a third pollen receptor kinase from tomato, LePRK3. LePRK3 is less similar to LePRK1 and LePRK2 than either is to each other. We used immunolocalization to show that all three LePRKs localize to the pollen tube wall, in partially overlapping but distinct patterns. We used RT-PCR and degenerate primers to clone homologues of the tomato kinases from other Solanaceae. We deduced features diagnostic of pollen receptor kinases and used these criteria to identify family members in the Arabidopsis database. RT-PCR confirmed pollen expression for five of these Arabidopsis candidates; two of these are clearly homologues of LePRK3. Our results reveal the existence of a distinct pollen-specific receptor kinase gene family whose members are likely to be involved in perceiving extracellular cues during pollen tube growth.  相似文献   

7.
8.
VH1/BRL2 is a receptor-like kinase of the BRI1 family with a role in vascular development. In developing Arabidopsis leaves it is expressed first in ground cells and then becomes restricted to provascular and procambial cells as venation forms. We isolated proteins interacting with the activated (phosphorylated) cytoplasmic domain of VH1/BRL2, and found that most belong to three processes: proteasome activity, vesicle traffic and intracellular signal transduction. Two adaptor proteins are included that we named VIT [VH1-interacting tetratricopeptide repeat (TPR)-containing protein] and VIK (VH1-interacting kinase), which are co-expressed in the same cells as VH1/BRL2 at two distinct time points in vein differentiation. Mutation of either adaptor or of VH1 results in vein pattern defects and in alterations in response to auxin and brassinosteroids. We propose that these two adaptors facilitate the diversification and amplification of a ligand signal perceived by VH1/BRL2 in multiple downstream pathways affecting venation.  相似文献   

9.
10.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

11.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


12.
Neospora caninum, the causative agent of neosporosis, is an obligate intracellular parasite considered to be a major cause of abortion in cattle throughout the world. Most studies concerning N. caninum have focused on life cycle, seroepidemiology, pathology and vaccination, while data on host-parasite interaction, such as host cell migration, mechanisms of evasion and dissemination of this parasite during the early phase of infection are still poorly understood. Here we show the ability of excreted/secreted antigens from N. caninum (NcESAs) to attract monocytic cells to the site of primary infection in both in vitro and in vivo assays. Molecules from the family of cyclophilins present on the NcESAs were shown to work as chemokine-like proteins and NcESA-induced chemoattraction involved Gi protein signaling and participation of CC-chemokine receptor 5 (CCR5). Additionally, we demonstrate the ability of NcESAs to enhance the expression of CCR5 on monocytic cells and this increase occurred in parallel with the chemotactic activity of NcESAs by increasing cell migration. These results suggest that during the first days of infection, N. caninum produces molecules capable of inducing monocytic cell migration to the sites of infection, which will consequently enhance initial parasite invasion and proliferation. Altogether, these results help to clarify some key features involved in the process of cell migration and may reveal virulence factors and therapeutic targets to control neosporosis.  相似文献   

13.
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.  相似文献   

14.
15.
Self-incompatibility (SI) in higher plants prevents inbreeding through specific recognition and rejection of incompatible (“self”) pollen. In Papaver rhoeas, S proteins encoded by the pistil component of the S-locus interact with incompatible pollen, triggering a Ca2+-dependent signaling network resulting in programmed cell death (PCD). We recently showed that a mitogen-activated protein kinase (MAPK) is involved in loss of pollen viability, stimulation of caspase-3-like (DEVDase) activity and later DNA fragmentation in incompatible pollen. As p56 appears to be the only MAPK activated by SI, our data suggest that p56 could be the MAPK responsible for mediating SI-induced PCD.Key words: MAPK, self-incompatibility, PCD, caspase-3-like activity, Papaver rhoeas  相似文献   

16.
17.
We have isolated a putative serine/threonine receptor kinase gene with an expression pattern indicating that it may play a role in the stylar response to pollination. Differential display PCR was used to select tobacco mRNAs with increased accumulation following pollination. NTS16, a cDNA identified by this method, is homologous to a ca. 2.4 kb mRNA primarily expressed in pistil tissues. Levels of this mRNA increase during floral development and are further increased by pollination reaching maximal accumulation 12–18 hours after pollination and then declining. mRNA levels can also be increased by the application of ethylene to unpollinated flowers. A polypeptide encoded by the NTS16 open reading frame has sequence similarity to the catalytic domain of several receptor protein kinases from plants including the S-receptor kinases implicated in the rejection of self-pollen in Brassica species and the Pto gene product of tomato which confers resistance to a bacterial pathogen.  相似文献   

18.
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein–coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.  相似文献   

19.
In an effort to extend the peptide aptamer approach, we have developed a scaffold protein that allows small molecule ligand control over the presentation of a peptide aptamer. This scaffold, a fusion of three protein domains, FKBP12, FRB, and GST, presents a peptide linker region for target protein binding only in the absence of the small molecule Rapamycin or other non-immunosuppressive Rapamycin derivatives. Here we describe the characterization of ligand-regulated peptide aptamers that interact with and inhibit the 5'-AMP-activated protein kinase (AMPK). AMPK, a central regulator of cellular energy homeostasis, responds to high cellular AMP/ATP ratios by promoting energy producing pathways and inhibiting energy consuming biosynthetic pathways. We have characterized 15 LiRPs of similar, poly-basic sequence and have determined that they interact with the substrate peptide binding region of both AMPK alpha1 and alpha2. These proteins, some of which serve as poor substrates of AMPK, inhibit the kinase as pseudosubstrates in a Rapamycin-regulated fashion in vitro, an effect that is largely competitive with substrate peptide and mediated by an increase in the kinase's apparent K(m) for substrate peptide. This pseudosubstrate inhibition of AMPK by LiRP proteins reduced the AMP stimulation of AMPK in vitro and caused the inhibited state of the kinase to kinetically resemble the basal, unstimulated state of AMPK, providing potential insight into the molecular mechanisms of AMP stimulation of AMPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号