首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amino acid residues in the metal-binding and putative substrate-binding sites of Escherichia coli methionine aminopeptidase (MAP) were mutated, and their effects on the function of the enzyme were investigated. Substitution of any amino acid residue at the metal-binding site resulted in complete loss of the two cobalt ions bound to the protein and diminished the enzyme activity. However, only Cys70 and Trp221 at the putative substrate-binding site are involved in the catalytic activity of MAP. Changing either of them caused partial loss of enzyme activity, while mutations at both positions abolished MAP function. Both residues are found to be conserved in type I but not type II MAPs.  相似文献   

3.
4.
Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.  相似文献   

5.
6.
7.
8.
J J Stuart  G Mocelin 《Génome》1995,38(4):673-680
The karyotype of the red flour beetle, Tribolium castaneum, was reexamined and improved by restriction enzyme banding with HpaII. After this treatment, each of the 10 chromosomes were identified in spermatogonial metaphase cells and 3 of the 8 autosomal bivalents and the XY pair were identified in spermatocyte metaphase I nuclei. Based on centromere position, relative length, and banding pattern, probable correlations between some of the mitotic chromosomes and some of the metaphase I bivalents were ascertained. Thus improved, the karyotypes of beetles harboring genetically defined translocations were investigated. Spermatocyte metaphase I nuclei were most informative, as normal chromosome pairing was visibly disrupted by rearrangements. Bivalents associated with each rearrangement were identified. Results demonstrated that each of the five best defined T. castaneum linkage groups corresponds to a different chromosome and established correspondence between bivalents and linkage groups 1-4. The relevance of these findings is discussed with regard to Tribolium genetics and evolution.  相似文献   

9.
N-acetyl transferase (NAT) is responsible to catalyze the transfer of acetyl groups to arylamines from acetyl-CoA. Aralkylamine Nacetyl transferase (AANAT), which belongs to GCN5-related N-acetyl transferase member, is a globular 23-kDa cytosolic protein that forms a reversible regulatory complex with 14-3-3 proteins, AANAT regulates the daily cycle of melatonin biosynthesis in mammals, making it an attractive target for therapeutic control of abnormal melatonin production in mood and sleep disorders. There is no evidence available regarding α and β subunits, active site and their ASA value in Dopamine N-acetyl transferase. Therefore, we describe the development of Dopamine N-acetyl transferase model in Tribolium castaneum. We further document the predicted active sites in the structural model with solvent exposed ASA residues. During this study, the model was built by CPH program and validated through PROCHECK, Verify 3D, ERRAT and ProSA for reliability. The active sites were predicted in the model with further ASA analysis of active site residues. The discussed information thus provides insight to the predicted active site and ASA values of Dopamine N-acetyl transferase model in Tribolium castaneum.  相似文献   

10.
11.
Summary The usefulness of a non-random group selection method in the improvement of a character influenced by interactions among individuals has been experimentally tested in a population of Tribolium castaneum. The selected trait —number of adults produced in a fixed period of time —showed a clear increase after 11 generations of selection. This increase is related to a reduction in developmental time, and it was specific for the population structure in which selection was applied, vanishing when this structure was altered.  相似文献   

12.
Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.  相似文献   

13.
14.
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.  相似文献   

15.
16.
17.
Zhou Y  Lin XW  Yang Q  Zhang YR  Yuan JQ  Lin XD  Xu R  Cheng J  Mao C  Zhu ZR 《Biochimie》2011,93(7):1124-1131
Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C6, C12, C16, C18:1, and C24:1-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe2+. These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.  相似文献   

18.
19.
Carbohydrate and Amino Acid Analyses of Giardia muris Cysts   总被引:1,自引:0,他引:1  
ABSTRACT. Intact Giardia muris cysts were subjected to consecutive chloroform/methanol and 2% sodium dodecyl sulfate (SDS) extractions, and to amyloglucosidase treatment. The SDS-insoluble, amyloglucosidase-fast cyst walls (ACW) were further incubated with chymotrypsin, trypsin, papain, or pronase. Low voltage scanning electron microscopy revealed no discernible change in the ultrastructure of the filamentous layer of the cyst wall following any of these treatments. Affinity for cyst wall-specific monoclonal antibody (Meridian Diagnostics, Cincinnati. OH) was also retained after all treatments. Periodic acid-Schiff staining and gas chromatography/mass spectrometry (GC/MS) of intact and treated cyst hydrolysates showed a significant reduction in the amount of glucose associated with the cyst (72 nmoles/106 intact cysts vs 1.9 nmoles/106 ACW) as a result of amyloglucosidase treatment, indicating that glucose is stored with in Giardia as an SDS-insoluble polymer, Galactosamine was identified by GC/MS as the predominant sugar associated with both the ACW and the proteinase treated ACW (42 nmoles/106 ACW). High performance liquid chromatographic analysis of amino acids from intact and treated cyst hydrolysates revealed a marked reduction, but not elimination, of detectable quantities of identifiable amino acid residues (255 nmoles/106 intact cysts vs 6.8 nmoles/106 proteinase treated ACW). These results suggest that the filamentous layer of the cyst wall is primarily a carbohydrate peptide complex.  相似文献   

20.
Female reproduction includes maturation of oocytes and the synthesis of yolk proteins (vitellogenin, Vg) in the fat body and their deposition into the oocytes. Our recent studies showed that juvenile hormone (JH) regulates Vg synthesis and 20-hydroxyecdysone (20E) regulates oocyte maturation in the red flour beetle (Tribolium castaneum). Here, we report on the role of nutritional signaling on vitellogenesis and oogenesis. Comparison of gene expression between fed and starved beetles by microarray analysis showed the up-regulation of genes involved in energy homeostasis and down-regulation of genes involved in egg production in the starved beetles. The RNA interference (RNAi) aided knock-down in the expression of genes involved in insulin and TOR signaling pathways showed that both these signaling pathways play key roles in Vg synthesis and oocyte maturation. Starvation of female beetles resulted in a block in Vg synthesis but not in the progression of primary oocyte development to the resting stage. Feeding after starvation induced Vg synthesis and the progression of primary oocytes from the resting stage to the mature stage. However, in the beetles where JH or 20E synthesis or action was blocked by RNAi, both Vg synthesis and oocyte maturation were affected suggesting that both these hormones (JH and 20E) and nutritional signaling and their cross-talk regulate vitellogenesis and oogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号