首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Reproductive cell specification during Volvox obversus development   总被引:1,自引:0,他引:1  
Asexual spheroids of the genus Volvox contain only two cell types: flagellated somatic cells and immotile asexual reproductive cells known as gonidia. During each round of embryogenesis in Volvox obversus, eight large gonidial precursors are produced at the anterior extremity of the embryo. These cells arise as a consequence of polarized, asymmetric divisions of the anteriormost blastomeres at the fourth through nine cleavage cycles, while all other blastomeres cleave symmetrically to yield somatic cell precursors. Blastomeres isolated from embryos at any point between the 2-cell and the 32-cell stage cleaved in the normal pattern and produced the same complement and spatial distribution of cell types as they would have in an intact embryo. This result indicates that intrinsic features control the cleavage patterns and developmental potentials of blastomeres, and rules out any significant role for cell-cell interactions in gonidial specification. When substantial quantities of anterolateral cytoplasm were deleted from uncleaved gonidia or 4-cell stage blastomeres, the cell fragments frequently regulated and embryos were produced with the expected number of asymmetrically cleaving cells and gonidial precursors at their anterior ends. However, when anterior cytoplasm was deleted from 8-cell stage blastomeres, the depleted cells frequently failed to cleave asymmetrically and produced no gonidial precursors. Furthermore, when compression was used to reorient cleavage planes at the fourth division cycle, so that anterior cytoplasm was transmitted to more than the normal number of cells, those cells receiving a significant amount of such cytoplasm cleaved asymmetrically to produce supernumerary gonidial precursors. Together, these last two experiments indicate that blastomeres in the V. obversus embryo acquire (at least by the end of the third cleavage cycle) a polarized organization in which anterior cytoplasm plays a causal role in the process of reproductive-cell specification.  相似文献   

2.
Kuroda et al. (2001) of our laboratory have previously revealed that exposure of early Xenopus embryos to 150 mm urethane results in complete suppression of formation of the asters and the cleavage furrow, as well as significant reduction of the size of the spindle in the blastomeres, allowing only 1 or 2 cycles of mitosis but not cytokinesis. In the course of closer examination of the effect of urethane on the cleavage of blastomeres of early Xenopus embryos, we unexpectedly discovered that exposure of early Xenopus embryos to 75 mm urethane did not prevent cell division at all, though asters were not detected in the blastomeres. Instead, they contained a spindle that appeared rather normal. They also formed the diastema, a thin yolk-free structure, which is considered to play an essential role in the induction of the cleavage furrow. Essentially the same results were obtained in the exposure of embryos to vinblastine, a well-known microtubule inhibitor: exposure of embryos to 20 micro g/mL vinblastine resulted in complete suppression of cleavage of the blastomeres, where formation of both the spindle and asters were perfectly suppressed. By contrast, exposure of embryos to 5 microg/mL vinblastine did not prevent cleavage in the blastomeres though asters were not detected, whereas the rather normal spindle was formed. Thus, there was a close correlation between the formation of the normal spindle, not asters, and that of the cell division furrow and the diastema in the blastomeres of early Xenopus embryos. We suggest that while the spindle plays an essential role, asters are likely to play only a dispensable role in the induction of the cleavage furrow in even very large cells like the blastomeres of early Xenopus embryos.  相似文献   

3.
Starfish blastomeres are reported to be totipotent up to the 8-cell stage. We reinvestigated the development of blastomeres of 8-cell stage embryos with a regular cubic shape consisting of two tiers of 4 blastomeres. On dissociation of the embryo by disrupting the fertilization membrane at the 8-cell stage, each of the 4 blastomeres of the vegetal hemisphere gave rise to an embryo that gastrulated, whereas blastomeres from the animal hemisphere did not. By injection of a cell lineage tracer into blastomeres of 8-cell stage embryos, we found that only those of the vegetal hemisphere formed cells constituting the archenteron. Next, we compressed 4-cell stage embryos along the animal-vegetal axis so that all the blastomeres in the 8-cell stage were in a single layer. When these 8 blastomeres were then dissociated, an average of 7 of them developed into gastrulae. By cell lineage analysis, all the blastomeres in single-layered embryos at the 8-cell stage were shown to have the capacity to form cells constituting an archenteron. Taken together, these findings indicate that the fate to form the archenteron is specified by a cytoplasmic factor(s) localized at the vegetal hemisphere, and that isolated blastomeres that have inherited this factor develop into gastrulae.  相似文献   

4.
The present study investigated the in vitro developmental potential of reconstituted mouse embryos produced from the cytoplast of pronuclear-stage embryos or oocytes and single blastomeres of 2-cell stage embryos by electrofusion. The cytoplast of pronuclear-stage embryos and oocytes were obtained by manual bisection with a fine glass needle under a dissecting microscope. The fusion rates of the reconstituted embryos produced from the cytoplast of oocytes and single blastomeres of 2-cell stage embryos (O-SB2: 38.1 and 41.5%) were significantly lower than those produced from the cytoplast of pronuclear-stage embryos and single blastomeres of 2-cell stage embryos (P-SB2: 91.2 and 97.6%; P<0.001). Reconstituted embryos were encapsulated in alginate gel and were cultured for 96 hours. Similarly, the cleavage and development rates to the blastocyst stage of O-SB2 (56.3, 61.2 and 2.0, 3.1%, respectively) were significantly lower than those of the P-SB2 (91.0, 91.2 and 18.6, 20.7%; respectively, P<0.05). The cleavage and development rates to the blastocyst stage (61.2 and 2.0%) of reconstituted embryos produced from single blastomeres of late 2-cell stage embryos and oocyte cytoplast improved after activation by ethanol treatment (76.1 and 21.7%). However, the use of single blastomeres of early 2-cell stage embryos as nuclear donors did not enhance the cleavage and development rates of the reconstituted embryos to the blastocyst stage.  相似文献   

5.
In this study we reinvestigate the early development of the freshwater mussel Dreissena polymorpha, previously studied by Meisenheimer (1901). The data include video time-lapse recordings of living embryos and bisbenzimide stains of fixed embryos as well as morphometry on fixed, serially-sectioned embryos. We present the cell lineage and cell cycle durations up to the first indication of symmetrization within this embryo. We show that early cell cycles last approximately 1h. A dramatic extension of cell cycle duration and a concomitant asynchrony among the various cell lines was observed starting at the fifth cleavage. Short cell cycles, like those of early blastomeres, were a constant property of the largest descendants of the 2d-cell line only. In contrast to Meisenheimer's observations and our experiences with other spiralian embryos, the cleavage pattern proved to follow multiple alternatives. The embryonic quadrants A-D were arranged in either a clockwise or counter-clockwise fashion and the chirality of the third cleavage was either dextral or sinistral irrespective of the arrangement of the quadrants. As a consequence, four different blastomere configurations were encountered and the dorsoventral axis could take four different angles with respect to the plane of first cleavage. The dorsal side was most easily recognized by the position of the 2d-micromere at the 16-cell stage. The fact that all of such embryos could develop into normal, uniform larvae is interpreted as the result of cell-cell interactions in morphogenetic regulation.  相似文献   

6.
We have produced two monoclonal antibodies (Epi-1 and Epi-2) which specifically recognize epidermal cells and their derivative, the larval tunic, of developing embryos of the ascidian Halocynthia roretzi. The antigens, examined by indirect immunofluorescence staining, first appear at the early tailbud stage and are present until at least the swimming larval stage. There were distinct and separate puromycin and actinomycin D sensitivity periods for each antigen. Aphidicolin, a specific inhibitor of DNA synthesis, prevented the appearance of each antigen when embryos were exposed to the drug continuously from cleavage stages. These results suggest that the antigens are synthesized during embryogenesis by developing epidermal cells and that several rounds of DNA replication are required for the antigen expression. Early cleavage stage embryos, including fertilized but unsegmented eggs, in which cytokinesis had been blocked with cytochalasin B expressed the antigens, and blastomeres exhibiting the antigens were always of the epidermis lineage. In partial embryos produced by four separated blastomere pairs of the 8-cell embryos, the expression of antigens was seen only in those developed from the animal blastomere pairs, which are progenitors of epidermal cells. These observations indicate that differentiation of epidermal cells in ascidian embryos takes place in a typical "mosaic" fashion.  相似文献   

7.
In the unperturbed development of the mouse embryo one of the 2-cell blastomeres tends to contribute its progeny predominantly to the embryonic and the other to the abembryonic part of the blastocyst. However, a significant minority of embryos (20-30%) do not show this correlation. In this study, we have used non-invasive lineage tracing to determine whether development of blastocyst pattern shows any correlation with the orientation and order of the second cleavage divisions that result in specific positioning of blastomeres at the 4-cell stage. Although the orientation and order of the second cleavages are not predetermined, in the great majority (80%) of embryos the spatial arrangement of 4-cell blastomeres is consistent with one of the second cleavages occurring meridionally and the other equatorially or obliquely with respect to the polar body. In such cleaving embryos, one of the 2-cell stage blastomeres tends to contribute to embryonic while the other contributes predominantly to abembryonic part of the blastocyst. Thus, in these embryos the outcome of the first cleavage tends to correlate with the orientation of the blastocyst embryonic-abembryonic axis. However, the order of blastomere divisions predicts a specific polarity for this axis only when the earlier 2-cell blastomere to divide does so meridionally. In contrast to the above two groups, in those embryos in which both second cleavage divisions occur in a similar orientation, either meridionally or equatorially, we do not observe any tendency for the 2-cell blastomeres to contribute to specific blastocyst parts. We find that all these groups of embryos develop to term with similar success, with the exception of those in which both second cleavage divisions occur equatorially whose development can be compromised. We conclude that the orientations and order of the second cleavages are not predetermined; they correlate with the development of blastocyst patterning; and that the majority, but not all, of these cleavage patterns allow equally successful development.  相似文献   

8.
Egg volume of a tropical sea urchin Echinometra mathaei is about one half that of other well-known species. We asked whether such a small size of eggs affected the timings of early developmental events or not. Cleavages became asynchronous from the 7th cleavage onward, and embryos hatched out before completion of the 9th cleavage. These timings were one cell cycle earlier than those in well-known sea urchins, raising the possibility that much earlier events, such as the increase in adhesiveness of blastomeres or the specification of dorso-ventral axis (DV-axis), would also occur earlier by one cell cycle. By examining the pseudopodia formation in dissociated blastomeres, it was elucidated that blastomeres in meso- and macromere lineages became adhesive after the 4th and 5th cleavages, respectively. From cell trace experiments, it was found that the first or second cleavage plane was preferentially employed as the median plane of embryo; the DV-axis was specified mainly at the 16-cell stage. Timings of these events were also one cell cycle earlier than those in Hemicentrotus pulcherrimus. The obtained results suggest that most of the early developmental events in sea urchin embryos do not depend on cleavage cycles, but on other factors, such as the nucleo-cytoplasmic ratio.  相似文献   

9.
Structural and functional polarity of starfish blastomeres   总被引:3,自引:0,他引:3  
The cortex of the blastomeres of Asterina pectinifera are structurally polarized so that some kinds of granules in the cortex, which can be stained vitally with Nile blue (Nile blue-positive granules, NBGs), and microvilli were distributed mainly in the apical region. The blastomeres always faced the adjoining blastomeres and blastocoel with the NBG-free, smooth region during embryogenesis. To confirm whether such blastomeres are functionally polarized, we rotated one of the blastomeres in the 2-cell-stage embryo so that it faced the other with the NBG-containing region. As a result, all embryos developed into twin or partitioned blastulae. This shows that the blastomeres are functionally polarized and have to orient the basal cortex toward the inner side of the embryo in order to be integrated into a blastula together with the others. The cortical polarity was formed and maintained even in blastomeres of dissociated embryos. In such blastomeres the cleavage furrows were formed along the axis of polarity. When the blastomeres began to adhere closely to each other at the 256-cell stage, only the NBG-free (basal) region acquired adhesiveness. These facts make it possible to infer why the correct apicobasal orientation of blastomeres is necessary for embryonic integration, without considering intercellular communication during the cleavage stage.  相似文献   

10.
Summary We have examined the potential of fluorescent latex microparticles for use as a short term cell lineage marker in the mouse preimplantation embryo. Isolated blastomeres and intact embryos rapidly adsorb and subsequently endocytose the particles (0.2 m diameter) from a monodisperse suspension in normal medium, so that cytoplasmic endocytic organelles, but not the cytosol itself, becomes labelled. Latex fluorescence, either within intact embryos, disaggregated cells or thick resin sections, is stable during UV irradiation. The development of labelled embryos, both in terms of sequential morphological changes and their time of expression, was comparable to controls and resulted in blastocysts with normal cell numbers and capacity for tissue differentiation. Latex fluorescence is preserved within all the progeny of labelled blastomeres over several cell cycles (e.g. from 8-cell stage to 64-cell stage) and is not transmitted to unlabelled cells either by exocytosis or via midbodies. The particles are particularly suitable for labelling exclusively the entire population of outside cells in the intact embryo from the 16-cell stage onwards.  相似文献   

11.
Summary Measurements were made of the external surface areas occupied by animal and vegetal blastomeres and their daughter cells at successive cleavage cycles in 15 embyros of Xenopus laevis. On the animal side, after each cleavage a general area increase (epiboly) occurs from cycle 4 (16-cell stage, stage 5) to cycle 10 (stage 8 1/2), while on the vegetal side there is a slight general area decrease after each cleavage from cycle 6 to cycle 10. The comparison between the external surface areas of individual animal blastomeres and those of their daughter cells, visible at the next cycle, shows a significantly larger increase after radial than after tangential cleavage, a difference that may be connected with the insertion of new membrane into the external surface at radial cleavage.  相似文献   

12.
Four-cell stage mouse blastomeres have different developmental properties   总被引:3,自引:0,他引:3  
Blastomeres of the early mouse embryo are thought to be equivalent in their developmental properties at least until the eight-cell stage. However, the experiments that have led to this conclusion could not have taken into account either the spatial origin of individual blastomeres or the spatial allocation and fate of their progeny. We have therefore readdressed this issue having defined cell lineages in mouse embryos undergoing different patterns of cleavage in their second division cycle. This has enabled us to identify a major group of embryos in which we can predict not only the spatial origin of each given four-cell blastomeres, but also which region of the blastocyst is most likely to be occupied by its progeny. We show that a pattern of second cleavage divisions in which a meridional division is followed by one that is equatorial or oblique allows us to identify blastomeres that differ in their fate and in their developmental properties both from each other and from their cousins. We find that one of these four-cell stage blastomeres that inherits some vegetal membrane marked in the previous cleavage cycle tends to contribute to mural trophectoderm. The progeny of its sister tend to donate cells to part of the ICM lining the blastocyst cavity and its associated trophectoderm. Chimaeras made entirely of these equatorially or obliquely derived blastomeres show developmental abnormalities in both late preimplantation and early postimplantation development. By contrast, chimaeras made from four-cell stage blastomeres from early meridional divisions develop normally. The developmental defects of chimaeras made from the most vegetal blastomeres that result from later second cleavages are the most severe and following transplantation into foster mothers they fail to develop to term. However, when such individual four-cell blastomeres are surrounded by blastomeres from random positions, they are able to contribute to all embryonic lineages. In conclusion, this study shows that while all four-cell blastomeres can have full developmental potential, they differ in their individual developmental properties according to their origin in the embryo from as early as the four-cell stage.  相似文献   

13.
The third cleavage plane in typical Xenopus embryos is horizontal. However, there are numbers of cases in which the third cleavage plane slants and yet the embryo develops normally. Pairs of animal-dorsal (AD) blastomeres of eight-cell stage Xenopus embryos with horizontal or oblique third cleavage plane were marked by intracellular injection of fluorescein dextran amine in order to locate their progeny. In neurulae, progeny of AD blastomeres was found mainly along the dorsal midline forming longitudinal clonal bands along the midline in the neural plate and the mesoderm underneath. AD blastomeres with oblique third cleavage plane further yielded the ventral endo-mesoderm in the head. On the other hand, they formed narrower clonal bands in the anterior ectoderm compared with AD blastomeres with horizontal third cleavage plane. Thus the fates of animal-dorsal brastomeres of eight-cell stage Xenopus embryos vary according to the specific patterns of the third cleavage plane. This indicates that the third cleavage in the Xenopus embryo does not affect the normal fate of each region of the embryo presumed at the eight-cell stage.  相似文献   

14.
Isolation of cleavage-stage blastomeres and the study of their developmental potential has been used extensively for analyzing the mechanisms of embryogenesis in vertebrates, including amphibians and echinoderms. We devised a method to isolate 8-cell stage blastomeres in the teleost, shiro-uo, by utilizing its unique cleavage pattern of the horizontal 3rd cleavage plane. Removal of all the upper blastomeres at the 8-cell stage allowed almost normal embryogenesis from the remaining lower blastomeres and yolk cell mass. Isolated upper or lower blastomeres formed vesicles and spherical bodies, which later showed morphological changes during cultivation. Mesoderm formation was detected not only in the cultivated lower blastomeres or whole blastomeres but also in the upper blastomeres isolated from the yolk cell mass at the 8-cell stage, although at a lower frequency than the lower blastomeres. These results indicated the presence of very early signaling for mesoderm induction, which is independent from the currently postulated signals from the yolk syncytial layer at later stages. This also indicated non-equivalence or differentiation of the blastomeres from the very early cleavage stage in teleost embryos.  相似文献   

15.
We studied the developmental potential of single blastomeres from early cleavage mouse embryos. Eight- and sixteen-cell diploid mouse embryos were disaggregated and single blastomeres from eight-cell embryos or pairs of sister blastomeres from sixteen-cell embryos were aggregated with 4, 5 or 6 tetraploid blastomeres from 4-cell embryos. Each diploid donor embryo gave eight sister aggregates, which later were manipulated together as one group (set). The aggregates were cultured in vitro until the blastocyst stage, when they were transferred (in sets) to the oviducts of pseudopregnant recipients. Eighteen live foetuses or pups were obtained from the transfer (11.0% of transferred blastocysts) and out of those, eleven developed into fertile adults (one triplet, one pair of twins and four singletons). In all surviving adults, pups and living foetuses, only diploid cells were detected in their organs and tissues as shown by analysis of coat pigmentation and distribution of glucose phosphate isomerase isoforms. In order to explain the observed high rate of mortality of transferred blastocysts, in an accompanying experiment, the diploid and tetraploid blastomeres were labelled with different fluorochromes and then aggregated. These experiments showed the diploid cells to be present not only in the inner cell mass (ICM) but also in the trophectoderm. The low number of diploid cells and the predominance of tetraploid cells in the ICM of chimaeric blastocysts might have been responsible for high postimplantation mortality of our experimental embryos.  相似文献   

16.
The epidermis of some insects is a sheet of siamese twin cells which are formed by conserving the midbody between siblings after cell division. We have found that for about 36 h after ecdysis to the 5th stage, the cells of Calpodes caterpillars contain one to five or more actin bundles. The variation in number of bundles occurs in an epithelium that is presumed to be otherwise genetically and developmentally homogeneous. The number of bundles is paired in adjacent cells (P less than 0.005, n = 617). Confocal microscopy shows midbodies between paired but not between unpaired cells. The pairing is reminiscent of the paired nucleolar patterns in these siamese twin cells (Locke, M., H. Leung, Tissue and Cell 17, 573-588 (1985)) or the mirrored patterns of stress fibers in newly divided 3T3 cells (Albrecht-Buehler, G., J. Cell Biol. 72, 595-603 (1977)). The pairing provides further evidence for the operation of transiently heritable factors as determinants for cell pattern.  相似文献   

17.
We have developed a short-term in vitro assay for the detection of sublethal effects produced by very low levels of ionizing radiation. The assay utilizes mouse embryo aggregation chimeras consisting of one irradiated embryo paired with an unirradiated embryo whose blastomeres have been labeled with fluorescein isothiocyanate (FITC). X irradiation (from 0.05 to 2 Gy) and chimera construction were performed with four-cell stage embryos, and the chimeras were cultured for 40 h to the morula stage. The morulae were partially dissociated with calcium-free culture medium and viewed under phase contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution of irradiated (unlabeled) and control (FITC labeled) embryos per chimera. In chimeras where neither embryo was irradiated, the ratio of the unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.50 (17.8 +/- 5.6 cells per unlabeled embryo and 17.4 +/- 5.5 cells per FITC-labeled partner embryo). However, in chimeras formed after the unlabeled embryos were irradiated with as little as 0.05 Gy, the ratio of unlabeled blastomeres to the total number of blastomeres per chimera embryo was 0.43 (P less than 0.01). The apparent decreases in cell proliferation were not observed in irradiated embryos that were merely cocultured with control embryos, regardless of whether the embryos were zona enclosed or zona free. We conclude that very low levels of radiation induce sublethal changes in cleaving embryos that are expressed as a proliferative disadvantage within two cell cycles when irradiated embryos are in direct cell-to-cell contact with unirradiated embryos.  相似文献   

18.
Thin sections, lanthanum tracer and the freeze-fracture technique revealed the presence of different types of cell junctions in early sea urchin (Paracentrotus lividus) embryos. During the first four cleavage cycles, which are characterized by synchrony of cell division, sister blastomeres were connected only by intercellular bridges, formed as a result of incomplete cytokinesis; no trace of other junctions was found at these stages. From the 16-cell stage onwards, septate junctions and gap junctions began to appear between blastomeres. It is postulated that cell-cell interactions may provide a mechanism for the propagation of signals necessary for the coordination of cell proliferation and differentiation.  相似文献   

19.
Summary Cytokinesis consists of a contractile phase followed by sealing of the connecting midbody to form two separated cells. To determine how soon the midbody sealed after cleavage furrow contraction, the fluorescent dye Lucifer Yellow CH(457.3 M.W.) was microinjected into cells at various intervals after cleavage had begun. Mitotic PtK2 cells were recorded with video-microscopy so that daughter cells in the epithelial sheet could be identified for several hours after cell division. One daughter cell of each pair followed was microinjected to determine whether the dye diffused into the other daughter cell. For intervals up to four hours after the beginning of cytokinesis, diffusion took place between daughter cells. After this time the dye did not spread between daughter cells. In sea urchin blastomeres of the first, second and third divisions, Lucifer Yellow passed between daughter blastomeres only during the first 15 min after cytokinesis. If one cell of a two-cell, four-cell or eight-cell embryo was microinjected more than 15 min after the last cleavage, the dye remained in the injected cell and was distributed to all progeny of that cell, resulting in blastulae that were either one-half, one-quarter or one-eighth fluorescent, respectively. Thus, although cleavage furrow contraction takes approximately the same amount of time in sea urchin blastomeres and PtK2 cells, the time of midbody sealing differs dramatically in the two cell types. Our results also indicate the importance of knowing the mitotic history of cells when injecting dyes into interphase cells for the purpose of detecting gap junctions.  相似文献   

20.
One-cell parthenogenetic haploid embryos and blastomeres of the 2- and 4-cell diploid mouse embryos were observed in vitro for the occurrence of two cytoplasmic activities: the cortical activity and the chromatin condensation activity. For this purpose anucleated halves (AHs) and nucleated halves (NHs) were produced by bisection of one-cell embryos and of blastomeres. The cortical activity (manifested by surface deformations) was observed only during the first cleavage cycle. In AHs the surface activity began at the same time as in NHs and disappeared before the time of the cleavage division of nucleated halves. Anucleate fragments of blastomeres from 2- and 4-cell embryos did not exhibit any cortical activity. In the absence of the native nucleus the chromatin condensation activity (assayed by premature chromatin condensation of interphase thymocyte nuclei introduced into cytoplasts by cell fusion) could also have been detected only in the first cleavage cycle. In AHs this activity appeared at the time when NHs started to cleave and disappeared after the NHs finished the first cleavage division. AHs obtained from 2-cell and 4-cell stage blastomeres did not reveal condensation activity. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号