首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: A simple single step technique of gel filtration was developed for the purification of chitinase from Serratia marcescens NK1. METHODS AND RESULTS: Chitinase from Ser. marcescens NK1 was purified to homogeneity by gel filtration chromatography with 9.2% recovery. The enzyme had a pH optimum of 6.2 and a temperature optimum of 47 degrees C. It was stable in a wide pH range of 3.0 to 10.0, retaining 60% activity at pH 3.0 and 65% activity at pH 10.5. It retained 70% activity at 28 degrees C after 72 h and nearly 50% activity at 50 degrees C up to 24 h. CONCLUSION: The chitinase from Ser. marcescens NK1 can be efficiently purified in a single step by gel filtration chromatography. The chitinase of Ser. marcescens NK1, a soil isolate, is highly stable and as active as that of other reported isolates of Ser. marcescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This purification scheme is advantageous because of its simplicity and can therefore be applied for the purification of other enzymes. The yield is sufficient for initial characterization studies of the enzyme, and an improved resolution can be obtained if the chromatography is done under fast flow systems.  相似文献   

2.
An alkalophilic, environmental micro-organism, Bacillus sp. BG-11, has been isolated and characterized. It produced 76 U ml-1 of chitinase in liquid batch fermentation after 72 h of incubation at 50 degrees C using chitin-enriched medium. The molecular weight of purified chitinase was estimated to be 41 kDa by SDS-PAGE. The pH and temperature optima of chitinase immobilized on chitosan and calcium alginate were 8.5 and 50 degrees C, respectively, which were same as that of free enzyme. The pH and thermostability of immobilized chitinase were enhanced significantly. The chitinase immobilized on chitosan was stable between pH 5.0 and 10.0, and the half-life of chitosan-immobilized enzyme at 70, 80 and 90 degrees C was 90, 70 and 60 min, respectively. The end-products formed during the enzyme-substrate reaction were identified by 13C-NMR, and N-acetyl-D-glucosamine was found to be the major end-product. GlcNAc (GlcNAc)2 and (GlcNAc)3 inhibited the chitinase activity by 32, 25 and 18%, respectively, at a concentration of 10 mmol l-1. The shelf-life of chitinase (retained 100% activity) at 4 degrees C was 8 weeks in the presence of either sodium azide (100 microgram ml-1), sodium metabisulphite (0.1% w/v) or KCl (15% w/v). The enzyme was resistant to the action of proteases and allosamidin.  相似文献   

3.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

4.
A novel goose-type lysozyme was purified from egg white of cassowary bird (Casuarius casuarius). The purification step was composed of two fractionation steps: pH treatment steps followed by a cation exchange column chromatography. The molecular mass of the purified enzyme was estimated to be 20.8 kDa by SDS-PAGE. This enzyme was composed of 186 amino acid residues and showed similar amino acid composition to reported goose-type lysozymes. The N-terminal amino acid sequencing from transblotted protein found that this protein had no N-terminal. This enzyme showed either lytic or chitinase activities and had some different properties from those reported for goose lysozyme. The optimum pH and temperature on lytic activity of this lysozyme were pH 5 and 30 degrees C at ionic strength of 0.1, respectively. This lysozyme was stable up to 30 degrees C for lytic activity and the activity was completely abolished at 80 degrees C. The chitinase activity against glycol chitin showed dual optimum pH around 4.5 and 11. The optimum temperature for chitinase activity was at 50 degrees C and the enzyme was stable up to 40 degrees C.  相似文献   

5.
A leucine aminopeptidase gene of Aquifex aeolicus, a hyperthermophilic bacterium, was cloned and expressed in Escherichia coli, and its expression product was purified and characterized. The expressed protein was purified to homogeneity by using heat to denature contaminating proteins followed by ion-exchange chromatography to purify the heat-stable product. The purified enzyme gave a single band on SDS-PAGE with a molecular weight of 54 kDa. Kinetic studies on the purified enzyme confirmed that it was a leucine aminopeptidase. The optimum temperature for its activity was around 80 degrees C and the optimum pH was in the range from 8.0 to 8.5. It was stable at high temperatures and 27% of its activity was retained after heating at 115 degrees C for 30 min. The purified enzyme had a pH stability range between 4.0 and 11.0. This aminopeptidase was highly resistant to organic solvents such as methanol, ethanol, tetrahydrofuran, dimethyl sulfoxide, acetone, acetonitrile, dimethyl formamide, 1-propanol, 2-propanol, and dioxane.  相似文献   

6.
Chitinase (EC 3.2.1.14) was isolated from the culture filtrate of Streptomyces sp. M-20 and purified by ammonium sulfate precipitation, DEAE-cellulose ion-exchange chromatography, and Sephadex G-100 gel filtration. No exochitinase activity was found in the culture filtrate. The molecular mass of the purified chitinase was 20 kDa, estimated by a sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was confirmed by activity staining with Calcofluor White M2R. Chitinase was optimally active at pH of 5.0 and at 30 degrees C. The enzyme was stable from pH 4 to 8, and up to 40 degrees C. Among the metals and inhibitors that were tested, the Hg(+), Hg(2+), and p-chloromercuribenzoic acid completely inhibited the enzyme activity. The chitinase activity was high on colloidal chitin, chitotriose, and chitooligosaccharide. The purified chitinase showed antifungal activity against Botrytis cinerea, and lysozyme activity against the cell wall of Botrytis cinerea.  相似文献   

7.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

8.
A marine psychrotolerant bacterium from the Antarctic Ocean showing high chitinolytic activity on chitin agar at 5 degrees C was isolated. The sequencing of the 16S rRNA indicates taxonomic affiliation of the isolate Fi:7 to the genus Vibrio. By chitinase activity screening of a genomic DNA library of Vibrio sp. strain Fi:7 in Escherichia coli, three chitinolytic clones could be isolated. Sequencing revealed, for two of these clones, the same open reading frame of 2,189 nt corresponding to a protein of 79.4 kDa. The deduced amino acid sequence of the open reading frame showed homology of 82% to the chitinase ChiA from Vibrio harveyi. The chitinase of isolate Fi:7 contains a signal peptide of 26 amino acids. Sequence alignment with known chitinases showed that the enzyme has a chitin-binding domain and a catalytic domain typical of other bacterial chitinases. The chitinase ChiA of isolate Fi:7 was overexpressed in E. coli BL21(DE3) and purified by anion-exchange and hydrophobic interaction chromatography. Maximal enzymatic activity was observed at a temperature of 35 degrees C and pH 8. Activity of the chitinase at 5 degrees C was 40% of that observed at 35 degrees C. Among the main cations contained in seawater, i.e., Na+, K+, Ca2+, and Mg2+, the enzymatic activity of ChiA could be enhanced twofold by the addition of Ca2+.  相似文献   

9.
A thermostable alkaline alpha-amylase producing Bacillus sp. A3-15 was isolated from compost samples. There was a slight variation in amylase synthesis within the pH range 6.0 and 12.0 with an optimum pH of 8.5 (8mm zone diameter in agar medium) on starch agar medium. Analyses of the enzyme for molecular mass and amylolytic activity were carried out by starch SDS-PAGE electrophoresis, which revealed two independent bands (86,000 and 60,500 Da). Enzyme synthesis occurred at temperatures between 25 and 65 degrees C with an optimum of 60 degrees C on petri dishes. The partial purification enzyme showed optimum activity at pH 11.0 and 70 degrees C. The enzyme was highly active (95%) in alkaline range of pH (10.0-11.5), and it was almost completely active up to 100 degrees C with 96% of the original activity remaining after heat treatment at 100 degrees C for 30 min. Enzyme activity was enhanced in the presence of 5mM CaCl2 (130%) and inhibition with 5mM by ZnCl2, NaCl, Na-sulphide, EDTA, PMSF (3mM), Urea (8M) and SDS (1%) was obtained 18%, 20%, 36%, 5%, 10%, 80% and 18%, respectively. The enzyme was stable approximately 70% at pH 10.0-11.0 and 60 degrees C for 24h. So our result showed that the enzyme was both, highly thermostable-alkaline, thermophile and chelator resistant. The A3-15 amylase enzyme may be suitable in liquefaction of starch in high temperature, in detergent and textile industries and in other industrial applications.  相似文献   

10.
A chitinase antigen has been identified in Pseudomonas aeruginosa strain 385 using sera from animals immunized with a whole-cell vaccine. The majority of the activity was shown to be in the cytoplasm, with some activity in the membrane fraction. The chitinase was not secreted into the culture medium. Purification of the enzyme was achieved by exploiting its binding to crab shell chitin. The purified enzyme had a molecular mass of 58 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 5.2. NH2-terminal amino acid sequencing revealed two sequences of M(I/L)RID and (Q/M/V)AREDAAAAM that gave an exact match to sequences in a translated putative open reading frame from the P. aeruginosa genome. The chitinase was active against chitin azure, ethylene glycol chitin, and colloidal chitin. It did not display any lysozyme activity. Using synthetic 4-methylumbelliferyl chitin substrates, it was shown to be an endochitinase. The Km and kcat for 4-nitrophenyl-beta-D-N,N'-diacetylchitobiose were 4.28 mM and 1.7 s(-1) respectively, and for 4-nitrophenyl-beta-D-N,N',N"-triacetylchitotriose, they were 0.48 mM and 0.16 s(-1) respectively. The pH optimum was determined to be pH 6.75, and 90% activity was maintained over the pH range 6.5 to 7.1. The enzyme was stable over the pH range 5 to 10 for 3 h and to temperatures up to 50 degrees C for 30 min. The chitinase bound strongly to chitin, chitin azure, colloidal chitin, lichenan, and cellulose but poorly to chitosan, xylan, and heparin. It is suggested that the chitinase functions primarily as a chitobiosidase, removing chitobiose from the nonreducing ends of chitin and chitin oligosaccharides.  相似文献   

11.
Two novel endo-β-1,4-glucanases, EG45 and EG27, were isolated from the gastric juice of mollusca, Ampullaria crossean, by anion exchange, hydrophobic interaction, gel filtration and a second round of anion exchange chromatography. The purified proteins EG45 and EG27 appeared as a single band on sodium dodecylsulfate polyacrylamide gel electrophoresis with a molecular mass of 45 kDa and 27 kDa, respectively. The optimum pH for CMC activity was 5.5 for EG45 and 4.4-4.8 for EG27. The optimum temperature range for EG27 was broad, between 50℃ and 60 ℃; for EG45 it was 50 ℃. The analysis on the stability of these two endo-β-1,4-glucanases showed that EG27 was acceptably stable at pH 3.0-11.0 even when the incubation time was prolonged to 24 h at 30 ℃, whereas EG45 remained relatively stable at pH 5.0-8.0. About 85% of the activity of EG27 could be retained upon incubation at 60 ℃ for 24 h. However, less than 10% residual activity of EG45 was detected at 50 ℃. Among different kinds of substrates, both enzymes showed a high preference for carboxymethyl cellulose. EG45, in particular, showed a carboxymethyl cellulose hydrolytic activity of 146.5 IU/mg protein. Both enzymes showed low activities to xylan (from oat spelt) and Sigmacell 101, and they were inactive to p-nitrophenyl-β-D-cellobioside, salicin and starch.  相似文献   

12.
Bacillus sp. RK-1 was isolated as a bacterium that produced maltose phosphorylase (MPase) in the culture supernatant. Screening was done from among about 400 isolates that could grow at 55 degrees C in a medium containing maltose as the sole carbon source. The enzyme was purified to an electrophoretically homogeneous state and some properties were investigated. The Mr of the enzyme was estimated to be 170 kDa by gel filtration and 88.5 kDa by SDS-PAGE, suggesting that it consisted of two identical subunits. The enzyme showed optimum activity around pH 6.0-7.0 and the optimum temperature was about 65 degrees C. The enzyme was stable in the range of pH 5.5-8.0 after keeping it at 4 degrees C for 24 h and retained the activity up to about 55 degrees C after keeping it for 15 min. This is the first report about an MPase that could be produced in the culture supernatant. Furthermore, these investigations showed that this MPase is one of the most thermostable ones reported so far.  相似文献   

13.
The fourth-day extract of a solid-state culture of the mesophilic Mucor sp. (M-105) strain showed a high milk-clotting activity and a clotting/proteolytic activity ratio similar to that of commercial preparations from microbial origin used in cheese manufacture. After ultrafiltration of the crude extract, the milk-clotting proteinase was purified in two steps: ion-exchange followed by size-exclusion chromatography. Enzyme homogeneity was assessed by HPLC, SDS-PAGE and N-terminal residue determination. A pI value of 4.21 was obtained and a molecular weight of 33 kDa was calculated from size-exclusion chromatography and SDS-PAGE data. The optimum pH for proteolytic activity towards dimethylcasein was in the 3.0-3.5 range. The proteinase retained 26 and 13% of its proteolytic activity after a 30-min incubation period, at pH 5.0 and 50 and 60 degrees C, respectively. This evidenced a lower heat stability than that of the thermophilic enzymes currently used in the cheese industry and also than that of bovine chymosin. The enzyme was fully inhibited by pepstatin A and no effect was observed with PMSF, p-CMPS or EDTA. The N-terminal amino acid sequence: GTGTVPVTDDGNLNEYYXTVTVGXP was compared with those from other fungal enzymes.  相似文献   

14.
Summary A -cyclodextrin glucosyltransferase was purified from alkalophilic Bacillus sp. No. 562 over 64-fold with a yield of 32%. Its molecular size was estimated to be 170 kDa by gel filtration and 82 kDa by SDS-PAGE, with a pI of 7.2. The enzyme showed optimum activity at 65 °C and pH 7.0. It was stable from 0 to70 °C and from pH 7.0 to 11.0. The enzyme was specifically inhibited by Fe2+ and Fe3+.  相似文献   

15.
A chitinase- and protease-producing bacterium was isolated and identified as Bacillus cereus TKU006. The better condition on our tests for protease and chitinase production was found when the culture was shaken at 25 degrees C for 2 days in 25 mL of medium containing 2% shrimp shell powder (w/v), 0.1% K(2)HPO(4), and 0.05% MgSO(4).7H(2)O. The molecular masses of TKU006 protease and chitinase determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis were approximately 39 and 35 kDa, respectively. The optimum pH, optimum temperature, pH stability, and thermal stability of TKU006 protease and chitinase were 9, 50 degrees C, 3-11, 50 degrees C and 5, 40 degrees C, 3-11, 60 degrees C, respectively. TKU006 protease was inhibited completely by EDTA, indicating that the TKU006 protease was a metalloprotease. The TKU006 protease and chitinase retained 61%, 60%, 73%, and 100% and 60%, 60%, 71%, and 96% of its original activity in the presence of 2% Tween 20, 2% Tween 40, 2% Triton X-100, and 1 mM SDS, respectively. The antioxidant activity of TKU006 culture supernatant was determined through the scavenging ability on DPPH with 70% per milliliter. In conclusion, the novelties of the TKU006 protease and chitinase include its high stability to the surfactants and pH. Besides, with this method, we have shown that marine wastes can be utilized to generate a high-value-added product and have revealed its hidden potential in the production of functional foods.  相似文献   

16.
A chitinase encoding gene from Bacillus sp. DAU101 was cloned in Escherichia coli. The nucleotide sequencing revealed a single open reading frame containing 1781 bp and encoding 597 amino acids with 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram. The chitinase was composed of three domains: a catalytic domain, a fibronectin III domain, and a chitin binding domain. The chitinase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 7.5 and 60 degrees C, respectively. The metal ions, Zn(2+), Cu(2+), and Hg(2+), were strongly inhibited chitinase activity. However, chitinase activity was increased 1.4-fold by Co(2+). Chisb could hydrolyze GlcNAc(2) to N-acetylglucosamine and was produced GlcNAc(2), when chitin derivatives were used as the substrate. This indicated that Chisb was a bifunctional enzyme, N-acetylglucosaminase and chitobiosidase. The enzyme could not hydrolyze glycol chitin, glycol chitosan, or CMC, but hydrolyzed colloidal chitin and soluble chitosan.  相似文献   

17.
Wang SL  Chen SJ  Wang CL 《Carbohydrate research》2008,343(7):1171-1179
A chitinase (CHT1) and a chitosanase (CHS1) were purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon and nitrogen source. The optimized conditions of this new species strain (Gen Bank Accession Number EU103629) for the production of chitinases were found to be when the culture was shaken at 30 degrees C for 3 days in 100 mL of medium (pH 8) containing 0.5% shrimp shell powder (SSP) (w/v), 0.1% K2HPO4, and 0.05% MgSO(4).7H2O. The molecular weights of CHT1 and CHS1 determined by SDS-PAGE were approximately 68 kDa and 30 kDa, respectively. The optimum pH, optimum temperature, pH stability, and the thermal stability of CHT1 and CHS1 were pH 6, 50 degrees C, pH 5-7, <50 degrees C and pH 4, 50 degrees C, pH 3-9, <50 degrees C, respectively. CHT1 was inhibited completely by Mn2+ and Fe2+, and CHS1 was inhibited by Mn2+, Cu2+, and PMSF. CHT1 was only specific to chitin substrates, whereas the relative activity of CHS1 increased when the degree of deacetylation of soluble chitosan increased.  相似文献   

18.
Marine endosymbiontic Roseobacter sp. (MMD040), which produced high yields of protease, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in Luria-Bertani broth. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 37 degrees C and 7.0, respectively. The enzyme exhibited maximum activity in pH range of 6-9 with an optimum pH of 8.0 and retained nearly 92.5% activity at pH 9.0. The enzyme was stable at 40 degrees C and showed 89% activity at 50 degrees C. Based on the present findings, the enzyme was characterized as thermotolerant alkaline protease, which can be developed for industrial applications.  相似文献   

19.
Actinomycetes were screened from soil in the centre of Poland on chitin medium. Amongst 30 isolated strains one with high activity of chitinase was selected. It was identified as Streptomyces sporovirgulis. Chitinase activity was detected from the second day of cultivation, then increased gradually and reached maximum after 4 days. The maximum chitinase production was observed at pH 8.0 and 25–30°C in the medium with sodium caseinate and asparagine as carbon and nitrogen sources and with shrimp shell waste as inducer of enzyme. Chitinase of S. sporovirgulis was purified from a culture medium by fractionation with ammonium sulphate as well as by chitin affinity chromatography. The molecular weight of the enzyme was 27 kDa. The optimum temperature and pH for the chitinase were 40°C and pH 8.0. The enzyme activity was characterised by high stability at the temperatures between 35 and 40°C after 240 min of preincubation. The activity of the enzyme was strongly inhibited in the presence of Pb2+, Hg2+ and stabilized by the ions Mg2+. Purified chitinase from S. sporovirgulis inhibited growth of fungal phytopathogen Alternaria alternata. Additionally, the crude chitinase inhibited the growth of potential phytopathogens such as Penicillium purpurogenum and Penillium sp.  相似文献   

20.
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号