首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Thr(P)-inhibitor-1 and Ser(P)-casein as substrates, studies on the activation of calcineurin purified from bovine brain have been carried out. The phosphatase requires the synergistic action of Ca2+, calmodulin and another divalent cation (Mg2+, Mn2+, Co2+ or Ni2+, but not Zn2+) for full expression of its activity. Ca2+ and Ca2+ X calmodulin act as allosteric activators to transform the phosphatase to a relaxed conformation, while Mg2+ acts solely as a cofactor for the catalytic action of the enzyme. In addition to their function as cofactors for catalysis, transition metal ions can also substitute for Ca2+ as allosteric activators. Ca2+ and calmodulin exert their activating effects mainly by increasing the Vm of the phosphatase reaction with little effect on the Km values for the substrates or on the KA values for the divalent cation cofactors. The predominant factor in dictating the catalytic properties of calcineurin is the divalent cation cofactor. For example, with Mg2+ as a cofactor, the phosphatase exhibits an optimum around pH 8.0-8.5; while with a transition metal ion as a cofactor, the optimum is around pH 7.0-7.5, regardless of whether Thr(P)-inhibitor-1 or Ser(P)-casein serves as a substrate, in the absence or the presence of Ca2+ X calmodulin.  相似文献   

2.
Calcineurin purified from bovine brain is shown to possess phosphotyrosyl -protein phosphatase activity towards proteins phosphorylated by the epidermal growth factor receptor/kinase. The phosphatase activity is augmented by Ca2+/calmodulin or divalent cation (Ni2+ greater than Mn2+ greater than Mg2+ greater than Co2+). In the simultaneous presence of all three effectors, the enzymatic activity is synergistically increased. Ca2+/calmodulin activates the Mg2+-supported activity by decreasing the Km value for phosphotyrosyl -casein from 2.2 to 0.6 microM, and increasing the Vmax from 0.4 to 4.6 nmol/min/mg. These results represent the first demonstration that calcineurin can dephosphorylate phosphotyrosyl -proteins and suggest a novel mechanism of activation of this enzyme.  相似文献   

3.
Ca2(+)-dependent protein phosphatase was purified from scallop adductor smooth muscle by a combination of DEAE-Toyoperal 650S ion exchange chromatographies and gel filtration on Sephacryl S-300. The phosphatase consisted of two subunits having molecular weights of 60 and 19 kDa. Phosphorylated regulatory light chain-a (RLC-a) was dephosphorylated by this phosphatase both in free and bound states in myosin prepared from the opaque portion of scallop smooth muscle (opaque myosin). The dephosphorylation was activated by Ca2+. The half maximal activation was a 1 microM free Ca2+ in the presence of calmodulin and 7 microM free Ca2+ in the absence of calmodulin. Opaque myosin phosphorylated at the heavy chain was not dephosphorylated with this phosphatase. p-Nitrophenyl phosphate was dephosphorylated. In addition to Ca2+, the phosphatase activity for RLC-a was activated by Mn2+, while p-nitrophenylphosphatase activity was activated by Mg2+ more strongly than by Mn2+. The pH-activity curves showed a maximum at pH 7 in the presence of Mn2+, but at around pH 8 in the presence of Mg2+. This phosphatase is similar to phosphatase 2B or calcineurin. The possible regulatory function of this phosphatase in scallop catch muscle is discussed.  相似文献   

4.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

5.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

6.
The divalent cation dependence of a calmodulin-stimulated phosphatase from bovine brain has been characterized kinetically using phosphorylated myelin basic protein and casein as substrates. At saturating concentrations of calmodulin, dephosphorylation of both myelin basic protein and casein was catalyzed 8- to 10-fold more rapidly at saturating concentrations of Mn2+ than at saturating concentrations of Ca2+. Half-maximal rates of dephosphorylation of both substrates occurred at either 15 microM Mn2+ or 1 microM Ca2+, and the Kact for each ion was not influenced appreciably by the presence of calmodulin. Half-maximal rates of dephosphorylation were observed at concentrations of calmodulin ranging from 3 X 10(-8) to 10(-6) M at saturating concentrations of divalent cations depending on the substrate used and the particular cation chosen. Trypsin treatment of the phosphatase activated the enzyme several-fold, eliminated its calmodulin dependence, but did not alter the Mn2+ concentration dependence of the activity. Ca2+ (10 microM) increased dephosphorylation rates without altering the Mn2+ concentration dependence of the phosphatase activity regardless of the presence of calmodulin. Mg2+ at millimolar concentrations did not alter the Ca2+ or Mn2+ concentration dependence of the activity. As measured without calmodulin, Ca2+ (90 microM) or Mn2+ (200 microM) produced nearly identical alterations of the far ultraviolet circular dichroic spectrum of the phosphatase.  相似文献   

7.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

8.
G Colombo  H A Lardy 《Biochemistry》1981,20(10):2758-2767
The presence of a divalent metal ion together with a catalytic amount of inosine 5'-diphosphate (IDP) is essential for the formation of pyruvate from oxalacetate catalyzed by purified rat liver cytosol phosphoenolpyruvate carboxykinase (PEPCK). With decreasing order of effectiveness, this pyruvate-forming activity was supported by micromolar levels of Cd2+, Zn2+, Mn2+, and Co2+. At the same concentrations, Mg2+ or Ca2+ was not effective. Combinations of Cd2+ with either Zn2+, Mn2+ or Co2+ were not additive with respect to the pyruvate-forming activity of PEPCK. Kinetic determination, with Cd2+ as the supporting cation, showed a 1:1 stoichiometry of interaction between each enzyme molecule and the nonconsumable substrate IDP. With 10 muM added Cd2+, the apparent Km for oxalacetate was 41 muM, and the apparent Ka for IDP was 0.25 muM. With Zn2+ or Mn2+, the apparent Ka for IDP was 0.2 or 0.13 muM, respectively. The effect of divalent transition-metal ions on PEPCK-catalyzed formation of phosphoenolpyruvate from oxalacetate was also investigated. Under steady-state conditions, the basal activity with MgITP was effectively enhanced with micromolar levels of Mn2+, Cd2+, or Co2+ included in the assay. The Vm increased 7- and 3.6-fold, and the apparent Km for MgITP changed by about a factor of 2 with the optimal concentrations of Mn2+ and Co2+, respectively. The most striking changes were in the apparent Km values for oxalacetate, which decreased to one-third and one-tenth when either Mn2+ or Co2+ was present in the assay together with Mg2+. The possible physiological importance of this kinetic effect is discussed.  相似文献   

9.
Calcineurin, a calmodulin-binding protein from brain, has been shown to possess a metal ion-dependent and calmodulin-stimulated phosphatase activity towards phosphorylase kinase and inhibitor-1 (Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. (1982) FEBS Lett. 137, 80-84). In this report, we show that calcineurin can also dephosphorylate p-nitrophenyl phosphate and free phosphotyrosine. However, calcineurin does not show significant activity towards phosphothreonine, phosphoserine, or several other low molecular weight phosphocompounds tested. As we have found with phosphorylase kinase and phosphocasein, the dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine is stimulated by calmodulin and is metal ion-dependent with the order of efficiency being Mn2+ much greater than Co2+ greater than Ca2+. The dephosphorylation of these substrates appears to be an intrinsic property of calcineurin and is not due to contamination by alkaline phosphatases since the pH optimum for calcineurin activity occurs at a neutral rather than an alkaline pH. The dephosphorylation of p-nitrophenyl phosphate provides an easy, rapid, and accurate method for the quantification of calcineurin activity as well as permitting insight into reaction kinetics. The dephosphorylation of free phosphotyrosine by calcineurin suggests that this compound may be a physiological substrate of calcineurin.  相似文献   

10.
Although the addition of various divalent metals to beta-galactosidase resulted in apparent activation, only Mg2+ and Mn2+ actually did activate. The apparent activation by the other divalent metals was shown to be due to Mg2+ impurities. Calcium did not activate, but experiments suggested that it did bind. Other divalent metals which were studied failed to bind. The dissociation constants for Mg2+ and Mn2+ were 2.8 X 10(-7) and 1.1 X 10(-8) M, respectively, and in each case one ion bound per monomer. These constants corresponded very closely to apparent values which were obtained from activation studies. The apparent binding constant for Ca2+, obtained from competition studies, was 1.5 X 10(-5) M. Data were obtained which showed that Mg2+, Mn2+, and Ca2+ all compete for binding at a single site. Of interest and of possible molecular biological importance was the observation that, while Mg2+ bound noncooperatively (n = 1.0), Mn2+ did so in a highly cooperative manner (n = 3.4). The binding of Mn2+ (as compared to Mg2+) resulted in a twofold drop in the Vmax for the hydrolysis and transgalactosylis reactions of lactose but had little effect on the Vmax of hydrolysis of allolactose, p-nitrophenyl beta-D-galactopyranoside (PNPG), or o-nitrophenyl beta-D-galactopyranoside (ONPG); Km values were not effected differently for any of the substrates by Mn2+ as compared to Mg2+. When very low levels of divalent metal ions were present (0.01 M EDTA added) or when Ca2+ was bound with lactose as the substrate, a greater decrease was observed in the rate of the transgalactosylic reaction than in the rate of the hydrolytic reaction, and the Km values for lactose and ONPG were increased. Of the three divalent metal ions which bound to beta-galactosidase, only Mn2+ had significant stabilizing effects toward denaturing urea and heat conditions.  相似文献   

11.
para-Nitrophenyl phosphorothioate (pNPT) was hydrolyzed by calcineurin at initial rates slightly, but comparable to rates for para-nitrophenyl phosphate (pNPP). Kinetic characterization yielded higher estimates for both Km and Vmax compared to pNPP. Metal ion activation of phosphorothioate hydrolysis was more promiscuous. Unlike the hydrolysis of with pNPP, Ca2+, Mg2+, and Ba2+ activated calcineurin as well as Mn2+.  相似文献   

12.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

13.
Martin BL  Jurado LA  Hengge AC 《Biochemistry》1999,38(11):3386-3392
Activation of calcineurin by Mn2+ and Mg2+ was compared using a heavy atom isotope analogue of the substrate p-nitrophenyl phosphate (pNPP). Heavy atom isotope effects were measured for Mg2+ activation and compared to published results of the isotope effects with Mn2+ as the activating metal. Isotope effects were measured for the kinetic parameter Vmax/Km at the nonbridging oxygen atoms [18(V/K)nonbridge]; at the position of bond cleavage in the bridging oxygen atom [18(V/K)bridge]; and at the nitrogen atom in the nitrophenol leaving group [15(V/K)]. The isotope effects increased in magnitude upon changing from an optimal pH to a nonoptimal pH; the 18(V/K)bridge effect increased from 1.0154 (+/-0.0007) to 1.0198 (+/-0.0002), and the 15(V/K) effect increased from 1.0018 (+/-0. 0002) to 1.0021 (+/-0.0003). The value for 18(V/K)nonbridge is 0. 9910 (+/-0.0003) at pH 7.0. As with Mn2+, the 18(V/K)nonbridge isotope effect indicated that the dianion was the substrate for catalysis, and that a dissociative transition state was operative for the phosphoryl transfer. Comparison to results for Mn2+ activation suggested that chemistry was more rate-limiting with Mg2+ than with Mn2+. Changing the activating metal concentration showed opposite trends with increasing Mg2+ increasing the commitment factor and seemingly making the chemistry less rate-limiting. The influence of viscosity was evaluated as well to gauge the role of chemistry. The activation of calcineurin-catalyzed hydrolysis of pNPP1 by Mg2+ or Mn2+ at pH 7.0 was compared in the presence of viscogens, glycerol and poly(ethylene glycol). Increasing glycerol caused different effects with the two activators. With Mn2+ as the activator, calcineurin activity showed a normal response with kcat and kcat/Km decreasing with viscosity. There was an inverse response with Mg2+ as the activator as values of kcat/Km increased with viscosity. From values of the normalized kcat/Km with Mn2+, the chemistry was found to be partially rate-limiting, consistent with previous heavy atom isotope studies (22). The effect observed for Mg2+ seems consistent with a change in the rate-limiting step for the two different metals at pH 7.0.  相似文献   

14.
The effects of ATP and divalent cations on a divalent cation-independent phosphorylase phosphatase of Mr = 35,000 (phosphatase S) purified from canine cardiac muscle have been studied. The enzyme can be rapidly inactivated by ATP or other nucleoside di- and triphosphates and PPi, but not by AMP, adenosine, adenine, Pi, EDTA, ethylene glycol bis(beta-aminoethyl ether)N,N' -tetraacetic acid, 1,10-phenanthroline, or 8-hydroxyquinoline. After removing the inactivating agent, such as ATP or PPi, by gel filtraiton followed by exhaustive dialysis, the inactivated enzyme (apophosphatase S) can be reactivated by preincubating with Mn2+ or Co2+, but not with Mg2+, Ca2+, Ni2+, Zn2+, Fe2+, Cu2+, Ba2+, Hg2+, Pb2+, or Cd2+. The Mn2+ -reactivated enzyme, which is less active than the Co2+ -reactivated enzyme, can be again inactivated by preincubating with ATP. The present findings indicate that phosphatase S contains a tightly bound divalent cation, probably Mn2+, in the active site. ATP and PPi, due to their structural similarity to the phosphoprotein substrate and their ability to chelate metal ions, can readily enter the active site to remove the divalent cation(s) essential for the catalytic function. The present findings also indicate that phosphatase S, a common catalytic subunit of several larger molecular forms of nospecific phosphoprotein phosphatase in cardiac muscle, can exist in two interconvertible forms, a metallized form (active) and a demetallized form (inactive). ATP and metal ions may regulate this class of isozymes by mediating the interconversions.  相似文献   

15.
Dolichyl phosphate concentrations, a primary factor in regulating the rate of N-glycosidically linked glycoprotein synthesis, are dependent upon a cytidine triphosphate (CTP)-dependent dolichol kinase. This study examines dolichol kinase in rat testicular microsomes and defines assay conditions. As with dolichol kinases from other tissues, addition of 2-mercaptoethanol increased activity 60%. Inclusion of NaF, an inhibitor of testicular dolichyl phosphate phosphatase activity, also resulted in a 38% increase in activity. Triton X-100 was necessary for phosphorylation of both endogenous and exogenous dolichol; however, concentrations of detergent in excess of 0.25-0.35% were inhibitory. A 2- to 5-fold stimulation of kinase activity was obtained by addition of 50-100 microM exogenous dolichol. The high level of nucleoside triphosphatase activity in testicular microsomes mandated the inclusion of high levels of uridine triphosphate (UTP) to protect the [gamma-32 P] CTP. Increasing UTP concentrations up to 50 mM resulted in increased product formation. A clear requirement for divalent cations was observed; 5 mM ethylenediaminetetraacetate (EDTA) abolished activity. The following order of cation effectiveness was observed: Mn greater than or equal to Ca greater than Cd greater than Zn much greater than Mg. Ten mM optima were established for Ca2+ and Mn2+; the presence of UTP, however, results in significantly reduced concentrations of free Ca2+. Ion combination studies demonstrated interactive inhibitory effects between Ca2+ and other stimulatory divalent cations. Addition of 2 microM brain calmodulin, in the presence of 10 mM Ca2+, resulted in a 75-100% stimulation of activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The activity of chicken liver mevalonate 5-diphosphate decarboxylase was measured over a wide range of Mg2+ and ATP concentrations. It was found that free ATP activated the enzyme, whereas free Mg2+ had no effect on the enzyme activity. Computed analyses of free species concentrations and pH studies indicated that MgATP2- is the true substrate. The relative efficiencies of Mg2+, Mn2+, Cd2+, and Zn2+ as activating metal ions were evaluated in terms of V/Km for the corresponding (metal-ATP)2- complexes, and the relative ratios were: Mn2+ 100, Cd2+ 37, Mg2+ 14, Zn2+ 1.7. Inhibitory effects were demonstrated for all free divalent cations tested, except for Mg2+, and were in the order Zn2+ greater than Cd2+ greater than Mn2+.  相似文献   

17.
Gastric microsomes do not contain any significant Ca2+-stimulated ATPase activity. Trypsinization of pig gastric microsomes in presence of ATP results in significant (2-3 fold) increase in the basal (with Mg2+ as the only cation) ATPase activity, with virtual elimination of the K+-stimulated component. Such treatment causes unmasking of latent Mg2+-dependent Ca2+-stimulation ATPase. Other divalent cations such as Sr2+, Ba2+, Zn2+, and Mn2+ were found ineffective as a substitute for Ca2+. Moreover, those divalent cations acted as inhibitors of the Ca2+-stimulated ATPase activity. The pH optimum of the enzyme is around 6.8. The enzyme has a Km of 70 microM for ATP and the Ka values for Mg2+ and Ca2+ are about 4 x 10(-4) and 10(-7) M, respectively. Studies with inhibitors suggest the involvement of sulfhydryl and primary amino groups in the operation of the enzyme. Possible roles of the enzyme in gastric H+ transport have been discussed.  相似文献   

18.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

19.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Cation dependence of restriction endonuclease EcoRI activity   总被引:3,自引:0,他引:3  
Restriction endonuclease EcoRI cleaves the DNA sequence 5'd(-G-A-A-T-T-C-) under optimum digestion conditions. A variation in pH and ionic strength can result in EcoRI activity when 5'd(-A-A-T-T-) is cut. A divalent cation, usually Mg2+, is required for enzyme activity, though Mn2+ can also be used. Eight different cations with ionic radius/charge ratios similar to Mg2+ were tested and Co2+ and Zn2+ were also found to act as cofactors for EcoRI. A comprehensive study has been made of the effect of NaCl and pH on the EcoRI/EcoRI transition in the presence of the above four cations. Generally, a decrease in NaCl and/or an increase in pH caused a decrease in enzyme specificity. The changeover depended on the cation. They may be placed in order of their ability to increase EcoRI specificity thus: Co2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. The Km of EcoRI for ColE1 DNA, in the presence of Co2+, was found to be 0.4 nM, compared to 3 nM with Mg2+, whereas the turnover was only one double-stranded scission/min with Co2+ compared to eight/min with Mg2+. The implications of all these findings on the enzyme's mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号