首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Rowland O  Lee R  Franke R  Schreiber L  Kunst L 《FEBS letters》2007,581(18):3538-3544
The cuticle coats the aerial organs of land plants and is composed of a cutin matrix embedded and overlayed with waxes. The Arabidopsis CER3 gene is important for cuticular wax biosynthesis and was reported to correspond to At5g02310 encoding an E3 ubiquitin ligase. Here, we demonstrate that CER3 is not At5g02310 and instead corresponds to WAX2/YRE/FLP1 (At5g57800), a gene of unknown function required for wax biosynthesis. CER3 protein has also been implicated in cutin production because strong cer3 alleles display organ fusions. Leaf cutin analysis of two cer3 alleles did not reveal significant differences in cutin load or composition, indicating that CER3 has no major role in leaf cutin formation.  相似文献   

2.
The cuticle covering the aerial organs of land plants plays a protective role against several biotic and abiotic stresses and, in addition, participates in a variety of plant-insect interactions. Here, we describe the molecular cloning and characterization of the maize (Zea mays) GLOSSY1 (GL1) gene, a component of the pathway leading to cuticular wax biosynthesis in seedling leaves. The genomic and cDNA sequences we isolated differ significantly in length and in most of the coding region from those previously identified. The predicted GL1 protein includes three histidine-rich domains, the landmark of a family of membrane-bound desaturases/hydroxylases, including fatty acid-modifying enzymes. GL1 expression is not restricted to the juvenile developmental stage of the maize plant, pointing to a broader function of the gene product than anticipated on the basis of the mutant phenotype. Indeed, in addition to affecting cuticular wax biosynthesis, gl1 mutations have a pleiotropic effect on epidermis development, altering trichome size and impairing cutin structure. Of the many wax biosynthetic genes identified so far, only a few from Arabidopsis (Arabidopsis thaliana) were found to be essential for normal cutin formation. Among these is WAX2, which shares 62% identity with GL1 at the protein level. In wax2-defective plants, cutin alterations induce postgenital organ fusion. This trait is not displayed by gl1 mutants, suggesting a different role of the maize and Arabidopsis cuticle in plant development.  相似文献   

3.
The outermost epidermal cell wall is specialized to withstand pathogens and natural stresses, and lipid-based cuticular polymers are the major barrier against incursions. The Arabidopsis thaliana mutant bodyguard (bdg), which exhibits defects characteristic of the loss of cuticle structure not attributable to a lack of typical cutin monomers, unexpectedly accumulates significantly more cell wall-bound lipids and epicuticular waxes than wild-type plants. Pleiotropic effects of the bdg mutation on growth, viability, and cell differentiation are also observed. BDG encodes a member of the alpha/beta-hydrolase fold protein superfamily and is expressed exclusively in epidermal cells. Using Strep-tag epitope-tagged BDG for mutant complementation and immunolocalization, we show that BDG is a polarly localized protein that accumulates in the outermost cell wall in the epidermis. With regard to the appearance and structure of the cuticle, the phenotype conferred by bdg is reminiscent of that of transgenic Arabidopsis plants that express an extracellular fungal cutinase, suggesting that bdg may be incapable of completing the polymerization of carboxylic esters in the cuticular layer of the cell wall or the cuticle proper. We propose that BDG codes for an extracellular synthase responsible for the formation of cuticle. The alternative hypothesis proposes that BDG controls the proliferation/differentiation status of the epidermis via an unknown mechanism.  相似文献   

4.
Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato ( Solanum lycopersicum ) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 ( cd1 ), cd2 and cd3 , the fruit cuticles of which have a dramatic (95–98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.  相似文献   

5.
As the outermost layer on aerial tissues of the primary plant body, the cuticle plays important roles in plant development and physiology. The major components of the cuticle are cutin and cuticular wax, both of which are composed primarily of fatty acid derivatives synthesized in the epidermal cells. Long-chain acyl-CoA synthetases (LACS) catalyze the formation of long-chain acyl-CoAs and the Arabidopsis genome contains a family of nine genes shown to encode LACS enzymes. LACS2 is required for cutin biosynthesis, as revealed by previous investigations on lacs2 mutants. Here, we characterize lacs1 mutants of Arabidopsis that reveals a role for LACS1 in biosynthesis of cuticular wax components. lacs1 lacs2 double-mutant plants displayed pleiotropic phenotypes including organ fusion, abnormal flower development and reduced seed set; phenotypes not found in either of the parental mutants. The leaf cuticular permeability of lacs1 lacs2 was higher than that of either lacs1 or lacs2 single mutants, as determined by measurements of chlorophyll leaching from leaves immersed in 80% ethanol, staining with toluidine blue dye and direct measurements of water loss. Furthermore, lacs1 lacs2 mutant plants are highly susceptible to drought stress. Our results indicate that a deficiency in cuticular wax synthesis and a deficiency in cutin synthesis together have compounding effects on the functional integrity of the cuticular barrier, compromising the ability of the cuticle to restrict water movement, protect against drought stress and prevent organ fusion.  相似文献   

6.
The aerial organs of plants are covered with a cuticle, a continuous layer overlaying the outermost cell walls of the epidermis. The cuticle is composed of two major classes of the lipid biopolymers: cutin and waxes, collectively termed cuticular lipids. Biosynthesis and transport of cuticular lipids occur predominantly in the epidermis cells. In the transport pathway, cuticular lipids are exported from their site of biosynthesis in the ER/plastid to the extracellular space through the plasma membrane and cell wall. Growing evidence suggests that ATP-binding cassette (ABC) transporters are implicated in transport of cuticular lipids across the plasma membrane of epidermal cells. The Arabidopsis ABC-type transporter protein CER5 (WBC12) was reported to act as a wax monomers transporter. In recent works, our group and others showed that a CER5-related protein, DESPERADO (DSO/WBC11), is required for cutin and wax monomers transport through the plasma membrane of Arabidopsis epidermis cells. Unlike the cer5 mutant, DSO loss-of-function had a profound effect on plant growth and development, particularly dwarfism, postgenital organ fusions, and altered epidermal cell differentiation. The partially overlapping function of CER5 and DSO and the fact that these proteins are half-size ABC transporters suggest that they might form a hetero-dimeric complex while transporting wax components. An intriguing observation was the polar localization of DSO in the distal part of epidermis cells. This polar expression might be explained by DSO localization within lipid rafts, specific plasma membrane microdomains which are associated with polar protein expression. In this review we suggest possible mechanisms for cuticular lipids transport and a link between DSO function and polar expression. Furthermore, we also discuss the subsequent transport of cuticular constituents through the hydrophobic cell wall and the possible involvement of lipid transfer proteins in this process.Key words: ABC transporter, cuticular lipids, polar expression, plasma membrane, epidermis  相似文献   

7.
The cuticle fulfills multiple roles in the plant life cycle, including protection from environmental stresses and the regulation of organ fusion. It is largely composed of cutin, which consists of C(16-18) fatty acids. While cutin composition and biosynthesis have been studied, the export of cutin monomers out of the epidermis has remained elusive. Here, we show that DESPERADO (AtWBC11) (abbreviated DSO), encoding a plasma membrane-localized ATP-binding cassette transporter, is required for cutin transport to the extracellular matrix. The dso mutant exhibits an array of surface defects suggesting an abnormally functioning cuticle. This was accompanied by dramatic alterations in the levels of cutin monomers. Moreover, electron microscopy revealed unusual lipidic cytoplasmatic inclusions in epidermal cells, disappearance of the cuticle in postgenital fusion areas, and altered morphology of trichomes and pavement cells. We also found that DSO is induced by salt, abscisic acid, and wounding stresses and its loss of function results in plants that are highly susceptible to salt and display reduced root branching. Thus, DSO is not only essential for developmental plasticity but also plays a vital role in stress responses.  相似文献   

8.
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.  相似文献   

9.
ABCG11/WBC11, an ATP binding cassette (ABC) transporter from Arabidopsis thaliana, is a key component of the export pathway for cuticular lipids. Arabidopsis wbc11 T-DNA insertional knock-out mutants exhibited lipidic inclusions inside epidermal cells similar to the previously characterized wax transporter mutant cer5, with a similar strong reduction in the alkanes of surface waxes. Moreover, the wbc11 knock-out mutants also showed defects not present in cer5, including post-genital organ fusions, stunted growth and a reduction in cutin load on the plant surface. A mutant line previously isolated in a forward genetics screen, called permeable leaves 1 (pel1), was identified as an allele of ABCG11/WBC11. The double knock-out wbc11 cer5 exhibited the same morphological and biochemical phenotypes as the wbc11 knock-out. A YFP-WBC11 fusion protein rescued a T-DNA knock-out mutant and was localized to the plasma membrane. These results show that WBC11 functions in secretion of surface waxes, possibly by interacting with CER5. However, unlike ABCG12/CER5, ABCG11/WBC11 is important to the normal process of cutin formation.  相似文献   

10.
The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.  相似文献   

11.
Although the multilayered structure of the plant cuticle was discovered many years ago, the molecular basis of its formation and the functional relevance of the layers are not understood. Here, we present the permeable cuticle1 (pec1) mutant of Arabidopsis thaliana, which displays features associated with a highly permeable cuticle in several organs. In pec1 flowers, typical cutin monomers, such as ω-hydroxylated fatty acids and 10,16-dihydroxypalmitate, are reduced to 40% of wild-type levels and are accompanied by the appearance of lipidic inclusions within the epidermal cell. The cuticular layer of the cell wall, rather than the cuticle proper, is structurally altered in pec1 petals. Therefore, a significant role for the formation of the diffusion barrier in petals can be attributed to this layer. Thus, pec1 defines a new class of mutants. The phenotypes of the pec1 mutant are caused by the knockout of ATP BINDING CASSETTEG32 (ABCG32), an ABC transporter from the PLEIOTROPIC DRUG RESISTANCE family that is localized at the plasma membrane of epidermal cells in a polar manner toward the surface of the organs. Our results suggest that ABCG32 is involved in the formation of the cuticular layer of the cell wall, most likely by exporting particular cutin precursors from the epidermal cell.  相似文献   

12.
David A. Bird   《Plant science》2008,174(6):563-569
The aerial surfaces of plants are enveloped by a waxy cuticle, which among other functions serves as a barrier to limit non-stomatal water loss and defend against pathogens. The cuticle is a complex three-dimensional structure composed of cutin (a lipid polyester matrix) and waxes (very long chain fatty acid derivatives), which are embedded within and layered on top of the cutin matrix. Biosynthesis of cuticular lipids is believed to take place solely within aerial epidermal cells. Once synthesized, both the waxes and the cutin precursors must leave the cytoplasm, pass through the hydrophilic apoplastic space, and finally assemble to form the cuticle. These processes of secretion and assembly are essentially unknown. Initial steps toward our understanding of these processes were the characterization of CER5/ABCG12/WBC12 and more recently ABCG11/WBC11, a pair of ABC transporters required for cuticular lipid secretion. ABCG12 is involved in wax secretion, as mutations in this gene result in a lower surface-load of wax and a concomitant accumulation of lipidic inclusions within the epidermal cell cytoplasm. Mutations in ABCG11 result in a similar wax phenotype as cer5 and similar cytoplasmic inclusions. In contrast to cer5, however, abcg11 mutants also show significantly reduced cutin, post-genital organ fusions, and reduced growth and fertility. Thus, for the first time, a transporter is implicated in cutin accumulation. This review will discuss the secretion of cuticular lipids, focusing on ABCG12, ABCG11 and the potential involvement of other ABC transporters in the ABCG subfamily.  相似文献   

13.
Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.  相似文献   

14.
Luo B  Xue XY  Hu WL  Wang LJ  Chen XY 《Plant & cell physiology》2007,48(12):1790-1802
Cuticle, including wax and cutin, is the barrier covering plant aerial organs and protecting the inner tissues. The Arabidopsis thaliana ATP-binding cassette (ABC) transporter CER5 (AtWBC12) has been identified as a wax exporter. In agreement with the latest report of another wax exporter, AtWBC11, here we show that atwbc11 mutants displayed organ fusions and stunted growth, and became vulnerable to chlorophyll leaching and toluidine blue staining. Chemical analysis showed that wax and cutin monomers were both reduced in the atwbc11 mutant. AtWBC11 was widely expressed in aerial organs. Interestingly, we found that the expression was light dependent, and the phytohormone ABA up-regulated AtWBC11 expression. We also found that while the AtWBC11 promoter had a broad pattern of activity, the expression was converted to epidermis specific when the reporter gene was fused to AtWBC11 cDNA. Furthermore, RNA blot analysis supported epidermis-specific expression of AtWBC11. Our results support that AtWBC11 is involved in cuticle development.  相似文献   

15.
The cuticle is the first defense against pathogens and the second way water is lost in plants. Hydrophobic layers covering aerial plant organs from primary stages of development form cuticle, including major classes of aliphatic wax components and cutin. Extensive research has been conducted to understand cuticle formation mechanisms in plants. However, many questions remain unresolved in the transport of lipid components to form cuticle. Database studies of the Lotus japonicus genome have revealed the presence of 24 sequences classified as putative non-specific lipid transfer proteins (nsLTPs), which were classified in seven groups; four groups were selected because of their expression in aerial organs. LjLTP8 forms a cluster with DIR1 in Arabidopsis thaliana while LjLTP6, LjLTP9, and LjLTP10 were grouped as type I LTPs. In silico studies showed a high level of structural conservation, and substrate affinity studies revealed palmitoyl-CoA as the most likely ligand for these LTPs, although the Lyso-Myristoyl Phosphatidyl Choline, Lyso-myristoyl phosphatidyl glycerol, and Lyso-stearyl phosphatidyl choline ligands also showed a high affinity with the proteins. The LjLTP6 and LjLTP10 genes were expressed in both the stems and the leaves under normal conditions and were highly induced during drought stress. LjLTP10 was the most induced gene in shoots during drought. The gene was only expressed in the epidermal cells of stems, primordial leaves, and young leaflets. LjLTP10 was positively regulated by MeJA but repressed by abscisic acid (ABA), ethylene, and H2O2, while LjLTP6 was weakly induced by MeJA, repressed by H2O2, and not affected by ABA and ethylene. We suggest that LjLTP10 is involved in plant development of stem and leaf cuticle, but also in acclimation to tolerate drought stress in L. japonicus.  相似文献   

16.
A phyllospheric bacterial culture, previously reported to partially replace nitrogen fertilizer (B. R. Patti and A. K. Chandra, Plant Soil 61:419-427, 1981) was found to contain a fluorescent pseudomonas which was identified as Pseudomonas putida and a Corynebacterium sp. The P. putida isolate was found to produce an extracellular cutinase when grown in a medium containing cutin, the polyester structural component of plant cuticle. The Corynebacterium sp. grew on nitrogen-free medium but could not produce cutinase under any induction conditions tested, whereas P. putida could not grow on nitrogen-free medium. When cocultured with the nitrogen-fixing Corynebacterium sp., the P. putida isolate grew in a nitrogen-free medium, suggesting that the former provided fixed N2 for the latter. These results suggest that the two species coexist on the plant surface, with one providing carbon and the other providing reduced nitrogen for their growth. The presence of cutin in the medium induced cutinase production by P. putida. However, unlike the previously studied fungal systems, cutin hydrolysate did not induce cutinase. Thin-layer chromatographic analysis of the products released from labeled apple fruit cutin showed that the extracellular enzyme released all classes of cutin monomers. This enzyme also catalyzed hydrolysis of the model ester substrates, p-nitrophenyl esters of fatty acids, and optimal conditions were determined for a spectrophotometric assay with p-nitrophenyl butyrate as the substrate. It did not hydrolyze triacyl glycerols, indicating that the cutinase activity was not due to a nonspecific lipase. It showed a broad pH optimum between 8.0 and 10.5 with 3H-labeled apple cutin as the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The cuticle covering every plant aerial organ is largely made of cutin that consists of fatty acids, glycerol, and aromatic monomers. Despite the huge importance of the cuticle to plant development and fitness, our knowledge regarding the assembly of the cutin polymer and its integration in the complete cuticle structure is limited. Cutin composition implies the action of acyltransferase-type enzymes that mediate polymer construction through ester bond formation. Here, we show that a member of the BAHD family of acyltransferases (DEFECTIVE IN CUTICULAR RIDGES [DCR]) is required for incorporation of the most abundant monomer into the polymeric structure of the Arabidopsis (Arabidopsis thaliana) flower cutin. DCR-deficient plants display phenotypes that are typically associated with a defective cuticle, including altered epidermal cell differentiation and postgenital organ fusion. Moreover, levels of the major cutin monomer in flowers, 9(10),16-dihydroxy-hexadecanoic acid, decreased to an almost undetectable amount in the mutants. Interestingly, dcr mutants exhibit changes in the decoration of petal conical cells and mucilage extrusion in the seed coat, both phenotypes formerly not associated with cutin polymer assembly. Excessive root branching displayed by dcr mutants and the DCR expression pattern in roots pointed to the function of DCR belowground, in shaping root architecture by influencing lateral root emergence and growth. In addition, the dcr mutants were more susceptible to salinity, osmotic, and water deprivation stress conditions. Finally, the analysis of DCR protein localization suggested that cutin polymerization, possibly the oligomerization step, is partially carried out in the cytoplasmic space. Therefore, this study extends our knowledge regarding the functionality of the cuticular layer and the formation of its major constituent the polymer cutin.One of the most crucial adaptations of plants to the terrestrial environment 450 million years ago was the formation of their surface, the cuticle. The cuticular layer, which is covalently attached to the cell wall, plays multiple roles in the plant interaction with its surroundings, including the regulation of epidermal permeability and nonstomatal water loss (Sieber et al., 2000). It is also recognized to be vital for plant growth and development, for example through mediating the prevention or promotion of postgenital organ fusion and the interaction between the pollen and the pistil (Lolle et al., 1998).The major component of the cuticle is cutin, a polyester insoluble in organic solvents, consisting of aliphatics (C16 and C18 fatty acids), aromatics (mainly ferulic and coumaric acids), and glycerol, which are likely linked by the action of different acyltransferases. Cutin insolubility could be explained either by covalent linkage to the cell wall or by cross-linking within its aliphatic domain (Pollard et al., 2008). Recently, α,ω-dicarboxylic and in-chain hydroxy fatty acids have been reported as the characteristic monomers of cutin in Arabidopsis (Arabidopsis thaliana; Bonaventure et al., 2004; Franke et al., 2005). Cutin polymerization possibly involves the formation of an oligomeric building block for lipid polyesters composed of the three components mentioned above. Oligomerization putatively occurs within the epidermal cells, and the oligomers are further relocated with the aid of ATP-binding cassette (ABC) transporters to the extracellular matrix, where the polymerization itself might occur (Pollard et al., 2008). The recently identified GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE4 (GPAT4) and GPAT8 are likely involved in oligomer formation through CoA-activated aliphatic fatty acid attachment to glycerol-3-phosphate (Li et al., 2007). However, GPATs represent only one component of the more complex machinery required for cutin oligomer and polymer formation.Recently, lipase-type enzymes have been proposed to be involved in the polymerization step that occurs in the apoplastic space of the epidermal cell extracellular matrix. The BODYGUARD (BDG) gene encodes a member of the α/β-hydrolase fold protein and is polarly localized in the outer cell walls of the Arabidopsis epidermal cells. It was suggested that BDG is involved in the completion of the apoplastic polymerization process, although the mechanism of its activity remains unclear (Kurdyukov et al., 2006a). A second gene identified in Agave americana (AgaSGNH) encodes a protein belonging to the SGNH hydrolase superfamily of lipases. Similar to BDG, AgaSGNH is polarly localized in the epidermal cell outer cell wall. It is mostly expressed in the expanding parts of young leaves where cutin biosynthesis is most active. The authors suggested that AgaSGNH is involved in cutin polymer formation through a yet unknown mechanism (Reina et al., 2007).Dicarboxylic fatty acids are the major cutin monomers in leaves and stem tissues of Arabidopsis, representing nearly half of its load. In addition to dicarboxylic acids, leaves and stems of Arabidopsis contain in-chain hydroxy fatty acids, among them 9(10),16-dihydroxy-hexadecanoic acid (up to 15% of total cutin; Nawrath, 2006). 9(10),16-Dihydroxy-hexadecanoic acid is the major cutin monomer of most angiosperms and gymnosperms (Holloway, 1982) and dominates the cutin composition of reproductive organs in many plant species, such as Vicia faba flower petals (Kolattukudy et al., 1974) and fruits of tomato (Solanum lycopersicum; Saladié et al., 2007), cherry (Prunus avium; Peschel et al., 2007), and gooseberry (Ribes uva-crispa; Kolattukudy, 2001). Early studies showed that at least half of secondary and all primary hydroxy groups of polyhydroxy fatty acids are esterified within the cutin polymer (Kolattukudy, 2001; Pollard et al., 2008). Thus, the existence of acyltransferases responsible for the acylation of either the primary or the secondary hydroxy groups of, for example, 9(10),16-dihydroxy-hexadecanoic acid, is anticipated. It is also possible that a second type of acyltransferase could utilize the CoA ester of the acid in order to incorporate it into the cutin polymeric structure.In this study, we show that the DEFECTIVE IN CUTICULAR RIDGES (DCR) gene encoding a putative acyltransferase of the Arabidopsis BAHD family is indispensable for the incorporation of 9(10),16-dihydroxy-hexadecanoic acid into the cutin polymer of reproductive and vegetative tissues. Chemical analysis shows that this acid is the most abundant Arabidopsis flower cutin monomer, representing nearly half of the cutin load. The characterization of DCR highlighted two new functions of the cuticle in decorating petal conical cells and the release of mucilage from the seed coat epidermis cells. The dramatic phenotypes of DCR mutant lines and the susceptibility of the mutant plants to water deprivation, salt, and osmotic stresses emphasize the importance of the intact cuticle in the protection against abiotic stresses. Furthermore, localization experiments of the DCR protein suggest that the process of cutin oligomerization or polymerization might take place in the cytoplasmic space. These findings shed light on cutin oligomer/polymer formation and the cuticle function in organ development.  相似文献   

18.
19.
20.
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号