首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1), which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.  相似文献   

2.
The Drosophila protein HP1 is a 206 amino acid heterochromatin- associated nonhistone chromosomal protein. Based on the characterization of HP1 to date, there are three properties intrinsic to HP1: nuclear localization, heterochromatin binding, and gene silencing. In this work, we have concentrated on the identification of domains responsible for the nuclear localization and heterochromatin binding properties of HP1. We have expressed a series of beta- galactosidase/HP1 fusion proteins in Drosophila embryos and polytene tissue and have used beta-galactosidase enzymatic activity to identify the subcellular localization of each fusion protein. We have identified two functional domains in HP1: a nuclear localization domain of amino acids 152-206 and a heterochromatin binding domain of amino acids 95- 206. Both of these functional domains overlap an evolutionarily conserved COOH-terminal region.  相似文献   

3.
4.
5.
Heterochromatin-associated protein 1 (HP1) is a nonhistone chromosomal protein associated with pericentromeric heterochromatin in Drosophila. HP1-like proteins have also been found associated with heterochromatin in human cells. The goal of this study was to determine whether proteins of the structurally conserved human HP1 family exhibit conserved heterochromatin targeting and silencing properties in Drosophila. We established transgenic lines of Drosophila melanogaster expressing each of the three human HP1 proteins, HP1Hsalpha, HP1HSbeta, and HP1Hsgamma, under the Hsp70 heat shock promoter. We show that all three isoforms of human HP1 are stably expressed in Drosophila and are associated with heterochromatin in Drosophila chromosomes. Like Drosophila HP1, all three human HP1 proteins are delocalized by an HP1-POLYCOMB chimeric protein, implying that both human HP1 and Drosophila HP1 interact in a common protein complex, and that at least some aspects of heterochromatin structure are highly conserved throughout the evolution of eukaryotes. Ectopic expression of two of the three human HP1 family proteins significantly enhances heterochromatic silencing in Drosophila.  相似文献   

6.
Stephens GE  Slawson EE  Craig CA  Elgin SC 《Biochemistry》2005,44(40):13394-13403
Heterochromatin Protein 2 (HP2) is a nonhistone chromosomal protein from Drosophila melanogaster localized principally in the pericentric heterochromatin, telomeres, and fourth chromosome, all regions associated with HP1. Mutations in HP2 can suppress position effect variegation, indicating a role in gene silencing and heterochromatin formation [Shaffer, C. D. et al. (2002) Proc. Natl. Acad. Sci.U.S.A. 99, 14332-14337]. In vitro coimmunoprecipitation experiments with various peptides from HP2 have identified a single HP1-binding domain. Conserved domains in HP2, including those within the HP1-binding region, have been identified by recovering and sequencing Su(var)2-HP2 from D. willistoni and D. virilis, as well as examining available sequence data from D. pseudoobscura. A PxVxL motif, shown to be an HP1-binding domain in many HP1-interacting proteins, is observed but is not well-conserved in location and sequence and does not mediate HP2 binding to HP1. The sole HP1-binding domain is composed of two conserved regions of 12 and 16 amino acids separated by 19 amino acids. Site-directed mutagenesis within the two conserved regions has shown that the 16 amino acid domain is critical for HP1 binding. This constitutes a novel domain for HP1 interaction, providing a critical link for heterochromatin formation in Drosophila.  相似文献   

7.
Pterin-4alpha-carbinolamine dehydratase (PCD) is a key enzyme in the regeneration pathway of tetrahydrobiopterin. Previously, we isolated and reported the Drosophila melanogaster gene encoding PCD. In the present study, we isolated and characterized the Drosophila virilis gene encoding PCD. The Drosophila virilis PCD gene has two introns and an open reading frame to encode a protein of 101 amino acids. The amino acid sequence of Drosophila virilis PCD shows a 83% homology to that of the Drosophila melanogaster PCD protein. From the alignment of the nucleotide sequence in the 5'-flanking region of the Drosophila melanogaster and Drosophila virilis PCD genes, we found four conserved sequences. Using a transient transfection assay, we showed that one of the conserved sequences (-127 to approximately -115) is critical for expression, also the minimal promoter region between -127 and +51 is necessary for the efficient expression of Drosophila melanogaster PCD.  相似文献   

8.
9.
HP1: a functionally multifaceted protein   总被引:5,自引:0,他引:5  
HP1 (heterochromatin protein 1) is a nonhistone chromosomal protein first discovered in Drosophila melanogaster because of its association with heterochromatin. Numerous studies have shown that such a protein plays a role in heterochromatin formation and gene silencing in many organisms, including fungi and animals. Cytogenetic and molecular studies, performed in Drosophila and other organisms, have revealed that HP1 associates with heterochromatin, telomeres and multiple euchromatic sites. There is increasing evidence that the different locations of HP1 are related to multiple different functions. In fact, recent work has shown that HP1 has a role not only in heterochromatin formation and gene silencing, but also in telomere stability and in positive regulation of gene expression.  相似文献   

10.
Genomic clones containing the full coding sequences of the two subunits of the Ca2+/calmodulin-stimulated protein phosphatase, calcineurin, were isolated from a Drosophila melanogaster genomic library using highly conserved human cDNA probes. Three clones encoded a 19.3-kDa protein whose sequence is 88% identical to that of human calcineurin B, the Ca(2+)-binding regulatory subunit of calcineurin. The coding sequences of the Drosophila and human calcineurin B genes are 69% identical. Drosophila calcineurin B is the product of a single intron-less gene located at position 4F on the X chromosome. Drosophila genomic clones encoding a highly conserved region of calcineurin A, the catalytic subunit of calcineurin, were used to locate the calcineurin A gene at position 21 EF on the second chromosome of Drosophila and to isolate calcineurin A cDNA clones from a Drosophila embryonic cDNA library. The structure of the calcineurin A gene was determined by comparison of the genomic and cDNA sequences. Twelve exons, spread over a total of 6.6 kilobases, were found to encode a 64.6-kDa protein 73% identical to either human calcineurin A alpha or beta. At the nucleotide level Drosophila calcineurin A cDNA is 67 and 65% identical to human calcineurin A alpha and beta cDNAs, respectively. Major differences between human and Drosophila calcineurins A are restricted to the amino and carboxyl termini, including two stretches of repetitive sequences in the carboxyl-terminal third of the Drosophila molecule. Motifs characteristic of the putative catalytic centers of protein phosphatase-1 and -2A and calcineurin are almost perfectly conserved. The calmodulin-binding and auto-inhibitory domains, characteristic of all mammalian calcineurins A, are also conserved. A remarkable feature of the calcineurin A gene is the location of the intron/exon junctions at the boundaries of the functional domains and the apparent conservation of the intron/exon junctions from Drosophila to man.  相似文献   

11.
12.
13.
The entire sequence of the Drosophila melanogaster yolk protein 3 (YP3) gene (yp3), including 1822 nucleotides (nt) of 5'- and 834 nt of 3'-flanking DNA, has been determined. In addition, the 5' and 3' ends of the mRNA and the two introns have been mapped. The predicted amino acid sequence of YP3 has considerable homology (43%) to the other two yolk proteins of D. melanogaster. The nucleotide sequence of yp3 was compared to the other two yolk protein genes which have the same developmental pattern of expression. In addition to extensive homology between the protein coding regions, we found two small regions of homology between yp3 flanking sequences and a segment of DNA required for normal expression of the yolk protein 1 gene in adult female fat bodies.  相似文献   

14.
S Guida  A Heguy  M Melli 《Gene》1992,111(2):239-243
The evolutionary conservation of a sequence or part of it can help to identify the essential functional and structural domains within a protein. We have cloned and characterised a cDNA coding for the type-I interleukin-1 receptor (IL-1R) of chick (ch) embryo fibroblasts. The comparison of the amino acid (aa) sequences of the avian with that of murine (m) and human (h) IL-1Rs shows a 60% homology. The intracellular domain is the most conserved region of the chIL-1R, showing 76-79% homology to the murine and human sequences, respectively. The striking conservation of the cytoplasmic region of the receptor is confirmed by its homology with the Toll receptor protein of Drosophila melanogaster. The alignment between the chicken and D. melanogaster proteins shows the presence of four aa blocks with more than 80% homology. The possible functional significance of this homology is discussed. The extracellular binding region of the receptor has a clearly recognisable immunoglobulin-like structure although the sequence divergence is higher than in the cytoplasmic domain.  相似文献   

15.
Association of the highly conserved heterochromatin protein, HP1, with the specialized chromatin of centromeres and telomeres requires binding to a specific histone H3 modification of methylation on lysine 9. This modification is catalyzed by the Drosophila Su(var)3-9 gene product and its homologues. Specific DNA binding activities are also likely to be required for targeting this activity along with HP1 to specific chromosomal regions. The Drosophila HOAP protein is a DNA-binding protein that was identified as a component of a multiprotein complex of HP1 containing Drosophila origin recognition complex (ORC) subunits in the early Drosophila embryo. Here we show direct physical interactions between the HOAP protein and HP1 and specific ORC subunits. Two additional HP1-like proteins (HP1b and HP1c) were recently identified in Drosophila, and the unique chromosomal distribution of each isoform is determined by two independently acting HP1 domains (hinge and chromoshadow domain) (47). We find heterochromatin protein 1/origin recognition complex-associated protein (HOAP) to interact specifically with the originally described predominantly heterochromatic HP1a protein. Both the hinge and chromoshadow domains of HP1a are required for its interaction with HOAP, and a novel peptide repeat located in the carboxyl terminus of the HOAP protein is required for the interaction with the HP1 hinge domain. Peptides that interfere with HP1a/HOAP interactions in co-precipitation experiments also displace HP1 from the heterochromatic chromocenter of polytene chromosomes in larval salivary glands. A mutant for the HOAP protein also suppresses centric heterochromatin-induced silencing, supporting a role for HOAP in centric heterochromatin.  相似文献   

16.
17.
18.
19.
Heterochromatin protein 1 (HP1) is a conserved component of the highly compact chromatin of higher eukaryotic centromeres and telomeres. Cytogenetic experiments in Drosophila have shown that HP1 localization into this chromatin is perturbed in mutants for the origin recognition complex (ORC) 2 subunit. ORC has a multisubunit DNA-binding activity that binds origins of DNA replication where it is required for origin firing. The DNA-binding activity of ORC is also used in the recruitment of the Sir1 protein to silence nucleation sites flanking silent copies of the mating-type genes in Saccharomyces cerevisiae. A fraction of HP1 in the maternally loaded cytoplasm of the early Drosophila embryo is associated with a multiprotein complex containing Drosophila melanogaster ORC subunits. This complex appears to be poised to function in heterochromatin assembly later in embryonic development. Here we report the identification of a novel component of this complex, the HP1/ORC-associated protein. This protein contains similarity to DNA sequence-specific HMG proteins and is shown to bind specific satellite sequences and the telomere-associated sequence in vitro. The protein is shown to have heterochromatic localization in both diploid interphase and mitotic chromosomes and polytene chromosomes. Moreover, the gene encoding HP1/ORC-associated protein was found to display reciprocal dose-dependent variegation modifier phenotypes, similar to those for mutants in HP1 and the ORC 2 subunit.  相似文献   

20.
The nucleotide sequences of two different cDNAs, CEHS48 and CEHS41, coding for the 16,000 dalton heat shock proteins (hsps) of Caenorhabditis elegans have been determined. CEHS48 codes for a polypeptide of 135 amino acids, approximately 15 fewer than the complete protein while CEHS41 is missing approximately 46 amino acids. From nucleotide 113 to the TAA termination signal the extent of homology between the sequences is 91%. Toward the 5' ends, the homology drops to 20% and results in completely divergent amino acid sequences. The 3' noncoding regions are only 30% homologous. Only CEHS48 contains a poly(A) signal and a poly(A) tail, suggesting that CEHS41 has an incomplete 3' end. The region from amino acid 43 to amino acid 115 shows extensive homology with corresponding regions in the four small hsps of Drosophila melanogaster and in mammalian alpha-crystallin. Two-dimensional gel analysis of in vitro synthesized hsp16 reveals the existence of five distinct components of identical molecular weights, but with different isoelectric points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号