首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic effects of a selection of triarylmethane, phenoxazine and phenothiazine dyes (pararosaniline (PR), malachite green (MG), methyl green (MeG); meldola blue (MB), nile blue (NB), nile red (NR); methylene blue (MethB)) and of ethopropazine on horse serum butyrylcholinesterase were studied spectrophotometrically at 25 °C in 50 mM MOPS buffer, pH 8, using butyrylthiocholine as substrate. PR, MeG, MB and ethopropazine acted as linear mixed type inhibitors of the enzyme, with respective Ki values of 4.5 ± 0.50 μM, 0.41 ± 0.007 μM, 0.44 ± 0.086 μM and 0.050 ± 0.0074 μM. MG, NB, MethB and NR caused complex, nonlinear inhibition pointing to cooperative binding at two sites. Intrinsic K′ values (≡[I]20.5 extrapolated to [S]=0) for MG, NB, NR and MethB were 0.20 ± 0.096 μM, 0.0018 ± 0.0015 μM, 0.92 ± 0.23 μM and 0.23 ± 0.08 μM. NB stood out as a potent inhibitor effective at nM levels. Comparison of inhibitory effects on horse and human serum butyrylcholinesterases suggested that the two enzymes must have distinct microstructural features.  相似文献   

2.
The effects of three cationic triarylmethane dyes - pararosaniline (PR), malachite green (MG), methyl green (MetG) - on electric eel AChE (eAChE) activity were tested at 25 degrees C, in 100mM MOPS buffer (pH 8) containing 0.125mM 5-5-dithio-bis(2-nitrobenzoic acid), 20-120muM acetylthiocholine and 0-20muM dye. All three dyes caused reversible, linear- or hyperbolic-mixed inhibition of esteratic activity. The respective inhibitory parameters for PR, MG and MetG were K(i)=8.4+/-0.67, 1.9+/-0.51 and 0.27+/-0.017muM; alpha (competitive coefficient)=5.8+/-2.0, 4.8+/-1.8 and 2.7+/-0.32; beta (noncompetitive coefficient)=0, 0 and 0.20+/-0.011. The data were consistent with ligand binding at the peripheral site and a remote effect on substrate binding and turnover.  相似文献   

3.
We have described recently an acetylcholinesterase (AChE) knockout mouse. While comparing the tissue distribution of AChE and butyrylcholinesterase (BChE), we found that extraction buffers containing Triton X-100 strongly inhibited mouse BChE activity. In contrast, buffers with Tween 20 caused no inhibition of BChE. Conventional techniques grossly underestimated BChE activity by up to 15-fold. In Tween 20 buffer, the intestine, serum, lung, liver, and heart had higher BChE than AChE activity. Only brain had higher AChE than BChE activity in AChE +/+ mice. These findings contradict the dogma, based mainly on observations in Triton X-100 extracts, that BChE is a minor cholinesterase in animal tissues. AChE +/- mice had 50% of normal AChE activity and AChE -/- mice had none, but all mice had similar levels of BChE activity. BChE was inhibited by Triton X-100 in all species tested, except rat and chicken. Inhibition was reversible and competitive with substrate binding. The active site of rat BChE was unique, having an arginine in place of leucine at position 286 (human BChE numbering) in the acyl-binding pocket of the active site, thus explaining the lack of inhibition of rat BChE by Triton X-100. The generally high levels of BChE activity in tissues, including the motor endplate, and the observation that mice live without AChE, suggest that BChE has an essential function in nullizygous mice and probably in wild-type mice as well.  相似文献   

4.
Choline oxidase catalyzes the oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate and molecular oxygen as primary electron acceptor. This study reports on the inhibitory effects of triarylmethanes (cationic malachite green; neutral leukomalachite green), phenoxazines (cationic, meldola blue and nile blue; neutral nile red) and a structurally-related phenothiazine (methylene blue) on choline oxidase, assayed at 25 degrees C in 50 mM MOPS buffer, pH 7, using choline as substrate. Methylene B acted as a competitive inhibitor with K(i) = 74 +/- 7.2 microM, pointing to the choline-binding site of the enzyme as a target site. Nile B caused noncompetitive inhibition of enzyme activity with K(i) = 20 +/- 4.5 microM. In contrast to methylene B and nile B, malachite G and meldola B caused complex, nonlinear inhibition of choline oxidase, with estimated K(i) values in the micromolar range. The difference in kinetic pattern was ascribed to the differential ability of the dyes to interact (and interfere) with the flavin cofactor, generating different perturbations in the steady-state balance of the catalytic process.  相似文献   

5.
The mechanism of inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) enzymes by 23 pregnane-type alkaloids isolated from the Sarcococca saligna was investigated. Lineweaver-Burk and Dixon plots and their secondary replots showed that the majority of these compounds, that is 1, 4, 5, 6, 9, 10, 12, 13, 15-19, and 21 were found to be noncompetitive inhibitors of both enzymes. Compounds 8, 20, 22, and 23 were determined to be uncompetitive inhibitors of BChE, while compounds 11 and 14 were found to be uncompetitive and linear mixed inhibitors of AChE, respectively. Ki values were found to be in the range of 2.65-250.0 microM against AChE and 1.63-30.0 microM against BChE. The structure-activity relationship (SAR) studies suggested that the major interaction of the enzyme-inhibitor complexes are due to hydrophobic and cation-pi interactions inside the aromatic gorge of these cholinesterases. The effects of various substituents on the activity of these compounds are also discussed in details.  相似文献   

6.
The inhibitory effects of the cationic triarylmethane (TAM+) dyes, pararosaniline (PR+), malachite green (MG+), and methyl green (MeG+) on human plasma cholinesterase (BChE) were studied at 25 degrees C in 100 mM Mops, pH 8.0, with butyrylthiocholine as substrate. PR+ and MG+ caused linear mixed inhibition of enzyme activity. The respective inhibitory parameters were K(i) = 1.9 +/- 0.23 microM, alpha = 13 +/- 48, beta = 0 and K(i) = 0.28 +/- 0.037 microM, alpha = 23 +/- 7.4, beta = 0. MeG+ acted as a competitive inhibitor with K(i) = 0.12 +/- 0.017 microM (alpha, infinity, beta, not applicable). The K(i) values were within the same range reported for a number of ChE inhibitors including propidium ion, donepezil, and the phenothiazines, suggesting that TAM+s are active site ligands. On the other hand, the alpha values failed to correlate with values previously reported for a number of ChE inhibitors. It appears that mixed inhibition is the combined result of more than one type of binding and S-I interference. The impact of ligands at the choline-specific and peripheral anionic sites (or, possibly, accessory structural domains) on BChE activity needs to be studied in further detail.  相似文献   

7.
In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.  相似文献   

8.
A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones’s oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds.  相似文献   

9.
Girard E  Bernard V  Minic J  Chatonnet A  Krejci E  Molgó J 《Life sciences》2007,80(24-25):2380-2385
At the neuromuscular junction (NMJ) acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can hydrolyze acetylcholine (ACh). Released ACh quanta are known to diffuse rapidly across the narrow synaptic cleft and pairs of ACh molecules cooperate to open endplate channels. During their diffusion through the cleft, or after being released from muscle nicotinic ACh receptors (nAChRs), most ACh molecules are hydrolyzed by AChE highly concentrated at the NMJ. Advances in mouse genomics offered new approaches to assess the role of specific cholinesterases involved in synaptic transmission. AChE knockout mice (AChE-KO) provide a valuable tool for examining the complete abolition of AChE activity and the role of BChE. AChE-KO mice live to adulthood, and exhibit an increased sensitivity to BChE inhibitors, suggesting that BChE activity facilitated their survival and compensated for AChE function. Our results show that BChE is present at the endplate region of wild-type and AChE-KO mature muscles. The decay time constant of focally recorded miniature endplate currents was 1.04 +/- 0.06 ms in wild-type junctions and 5.4 ms +/- 0.3 ms in AChE-KO junctions, and remained unaffected by BChE-specific inhibitors, indicating that BChE is not limiting ACh duration on endplate nAChRs. Inhibition of BChE decreased evoked quantal ACh release in AChE-KO NMJs. This reduction in ACh release can explain the greatest sensitivity of AChE-KO mice to BChE inhibitors. BChE is known to be localized in perisynaptic Schwann cells, and our results strongly suggest that BChE's role at the NMJ is to protect nerve terminals from an excess of ACh.  相似文献   

10.
A set of hybrid molecules were synthesized out of lipoic acid, alpha,omega-diamines of different lengths serving as spacers, and cholinesterase (ChE) inhibiting [2,1-b]quinazolinimines. Depending on the length of the alkylene spacer the amide hybrids are inhibitors of acetylcholinesterase (AChE) with inhibitory activities of 0.5-4.6microM and inhibitors of butyrylcholinesterase (BChE) with activities down to 5.7nM, therefore greatly exceeding the inhibitory activities of the parent quinazolinimines by factors of up to 1000. Due to increasing activity at BChE with increasing length of the alkylene spacer approximately 100-fold selectivity toward BChE is reached with a hepta- and an octamethylene spacer. Kinetic measurements reveal competitive and reversible inhibition of both ChEs by the hybrids. Furthermore, cell viability and antioxidant activity (using the ORAC-fluorescein assay) of several hybrids were evaluated, showing cytotoxicity at concentrations from 3.7 to 10.2microM and antioxidant properties are in the range of 0.4-0.8 Trolox equivalents (lipoic acid=0.6).  相似文献   

11.
Thirteen Psychotria alkaloids were evaluated regarding their interactions with acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidases A and B (MAO-A and MAO-B), which are enzymatic targets related with neurodegenerative diseases. Two quaternary β-carboline alkaloids, prunifoleine and 14-oxoprunifoleine, inhibited AChE, BChE and MAO-A with IC50 values corresponding to 10 and 3.39 μM for AChE, 100 and 11 μM for BChE, and 7.41 and 6.92 μM for MAO-A, respectively. Both compounds seem to behave as noncompetitive AChE inhibitors and time-dependent MAO-A inhibitors. In addition, the monoterpene indole alkaloids (MIAs) angustine, vallesiachotamine lactone, E-vallesiachotamine and Z-vallesiachotamine inhibited BChE and MAO-A with IC50 values ranging from 3.47 to 14 μM for BChE inhibition and from 0.85 to 2.14 μM for MAO-A inhibition. Among the tested MIAs, angustine is able to inhibit MAO-A in a reversible and competitive way while the three vallesiachotamine-like alkaloids display a time-dependent inhibition on this target. Docking calculations were performed in order to understand the binding mode between the most active ligands and the selected targets. Taken together, our findings established molecular details of AChE, BChE and MAO-A inhibition by quaternary β-carboline alkaloids and MIAs from Psychotria, suggesting these secondary metabolites are scaffolds for the development of multifunctional compounds against neurodegeneration.  相似文献   

12.
A comparative study of specific activities and in vitro inhibition of brain and serum acetylcholinesterase (AChE; EC 3.1.1.7) and serum butyrylcholinesterase (BChE; EC 3.1.1.8) by DDVP, an organophosphorus pesticide, was conducted in 11 freshwater teleost species belonging to four families (Cyprinidae; common carp Cyprinus carpio, bream Abramis brama, blue bream A. ballerus, white bream Blicca bjoerkna, roach Rutilus rutilus, bleak Alburnus alburnus, ide Leuciscus idus; Percidae: perch Perca fluviatilis, pikeperch Stizostedion lucioperca; Esocidae: pike Esox lucius and Coregonidae: whitefish Coregonus albula). Specific AChE and BChE activities in brain and serum of fish were determined. Brain AChE activity varied among fish species approximately 10-fold, ranging from 192.6 to 1353.2 micromol g(-1) h(-1), respectively in perch and whitefish. All cyprinids had higher brain AChE activity than those of other fish families. Serum AChE activity was 100-fold lower than in brain. Serum BChE activity was found only in cyprinids with the exception of the common carp. It varied from 163.8 to 970.3 micromol g(-1) h(-1), respectively in roach and bleak. The bimolecular enzyme inhibition rate constants (kIIs) and pI50) values for DDVP were calculated. Sensitivity of fish AChEs both in brain and serum is similar to those of typical AChEs in mammals. The range of kIIs was 3.4-51.7 x 10(3) mol(-1) 1 min(-1) (pI50s were 5.3-6.5), respectively in white bream and ide. In contrast, fish serum BChE was more sensitive to inhibition than typical BChE and AChE in mammals. Values of kII for BChE were 1.0-2.5 x 10(7) mol(-1) 1 min(-1) (pI50 was 8.8-9.2), respectively in ide and bleak.  相似文献   

13.
Butyrylcholinesterase (BChE), a serine hydrolase biochemically related to the cholinergic enzyme Acetylcholinesterase (AChE), is found in many mammalian tissues, such as serum and central nervous system, but its physiological role is still unclear. BChE is an important human plasma esterase, where it has detoxifying roles. Furthermore, recent studies suggest that brain BChE can have a role in Alzheimer’s disease (AD). The endocannabinoid arachidonoylethanolamide (anandamide) and other acylethanolamides (NAEs) are almost ubiquitary molecules and are physiologically present in many tissues, including blood and brain, where they show neuroprotective and anti-inflammatory properties. This paper demonstrates that they are uncompetitive (oleoylethanolamide and palmitoylethanolamide) or non competitive (anandamide) inhibitors of BChE (Ki in the range 1.32-7.48 nM). On the contrary, NAEs are ineffective on AChE kinetic features. On the basis of the X-ray crystallographic structure of human BChE, and by using flexible docking procedures, an hypothesis on the NAE-BChE interaction is formulated by molecular modeling studies. Our results suggest that anandamide and the other acylethanolamides studied could have a role in the modulation of the physiological actions of BChE.  相似文献   

14.
The fungus Lasiodiplodia theobromae is one of the main causal agents of trunk canker and dieback of grapevine. The objective of this work was to evaluate the efficiency of photodynamic inactivation (PDI) of L. theobromae with synthetic and natural photosensitizers and irradiation with either sunlight or artificial photosynthetically active radiation. Although the growth of the mycelium could not be completely prevented with natural sunlight irradiation, phenothiazine dyes (methylene blue, MB; toluidine blue O, TBO), riboflavin and a cationic porphyrin (Tetra-Py+-Me) caused complete inhibition under continuous irradiation with artificial light. Free radicals were the main cytotoxic agents in the PDI with MB, indicating the predominance of the type I mechanism. PDI with MB or Tetra-Py+-Me may represent a promising approach for the sanitation of vine material in greenhouse nurseries, in order to reduce the risk of infection upon grafting.  相似文献   

15.
Bambuterol is a chiral carbamate and a selective inhibitor of butyrylcholinesterase (BChE, EC 3.1.1.8). In order to relate bambuterol selectivity and stereoselectivity of BChE and acetylcholinesterase (AChE, EC 3.1.1.7) of different species, we studied the inhibition of human, mouse, and horse BChE, as well as AChE of human and mouse by (R)- and (S)-bambuterol. AChE and BChE of all studied species were progressively inhibited by both bambuterol enantiomers, with a preference for the (R)-bambuterol whose inhibition rate constants were about five times higher than that of (S)-bambuterol. We observed no significant difference between human and mouse in bambuterol enantiomer BChE inhibition. However, (R)-bambuterol inhibited horse BChE about 14 times slower than human and mouse BChE, and the inhibition rate for (S)-bambuterol was about 18 times slower. Although the primary structure of horse BChE differs from the other two species in 15 amino acids, we presumed that differences in inhibition rates could be attributed to threonine at position 69 located close to the peripheral site of BChE. Since BChE inhibition by bambuterol enantiomers was at least 8000 times faster than that of AChE, both bambuterol enantiomers proved to be selective BChE inhibitors, as was previously shown for racemate.  相似文献   

16.
Simple modifications to the anhydride moiety of norcantharidin have lead to the development of a series of analogues displaying modest PP1 inhibition (low muM IC(50)s) comparable to that of norcantharidin (PP1 IC(50)=10.3+/-1.37 microM). However, unlike norcantharidin, which is a potent inhibitor of PP2A (IC(50)=2.69+/-1.37 microM), these analogues show reduced PP2A inhibitory action resulting in the development of selective PP1 inhibitory compounds. Data indicates that the introduction of two ortho-disposed substituents on an aromatic ring, or para-substituent favours PP1 inhibition over PP2A inhibition. Introduction of a p-morphilinoaniline substituent, 35, affords an inhibitor displaying PP1 IC(50)=6.5+/-2.3 microM; and PP2A IC(50)=7.9+/-0.82 microM (PP1/PP2A=0.82); and a 2,4,6-trimethylaniline, 23, displaying PP1 IC(50)=48+/-9; and PP2A IC(5) 85+/-3 microM (PP1/PP2A=0.56). The latter shows a 7-fold improvement in PP1 versus PP2A selectivity when compared with norcantharidin. Subsequent analysis of 23 and 35 as potential PP2B inhibitors revealed modest inhibition with IC(50)s of 89+/-6 and 42+/-3 microM, respectively, and returned with PP1/PP2B selectivities of 0.54 and 0.15. Thus, these analogues are the simplest and most selective PP1 inhibitors retaining potency reported to date.  相似文献   

17.
Haloxysterols A-D (1-4), new C-24 alkylated sterols, have been isolated from the chloroform soluble fraction of Haloxylon recurvum, along with five known sterols 5-9, which are reported for the first time from this species. Their structures were determined by means of 1D- and 2D-NMR techniques. Compounds 1-9 inhibited cholinesterase enzymes in a concentration-dependent manner with K(i) values ranging between 0.85-25.5 and 1.0-19.0 microM against acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) enzymes, respectively. Lineweaver-Burk, Dixon plots and their secondary replots indicated that compounds 1-9 are non-competitive inhibitors of both AChE and BChE enzymes.  相似文献   

18.
Choline oxidase catalyzes the oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate and molecular oxygen as primary electron acceptor. This study reports on the inhibitory effects of triarylmethanes (cationic malachite green; neutral leukomalachite green), phenoxazines (cationic, meldola blue and nile blue; neutral nile red) and a structurally-related phenothiazine (methylene blue) on choline oxidase, assayed at 25°C in 50 mM MOPS buffer, pH 7, using choline as substrate. Methylene B acted as a competitive inhibitor with Ki = 74 ± 7.2 μM, pointing to the choline–binding site of the enzyme as a target site. Nile B caused noncompetitive inhibition of enzyme activity with Ki = 20 ± 4.5 μM. In contrast to methylene B and nile B, malachite G and meldola B caused complex, nonlinear inhibition of choline oxidase, with estimated Ki values in the micromolar range. The difference in kinetic pattern was ascribed to the differential ability of the dyes to interact (and interfere) with the flavin cofactor, generating different perturbations in the steady-state balance of the catalytic process.  相似文献   

19.
A small library of (E) α,β-unsaturated fatty acids was prepared, and 20 different saturated and mono-unsaturated fatty acids differing in chain length were subjected to Ellman’s assays to determine their ability to act as inhibitors for AChE or BChE. While the compounds were only very weak inhibitors of BChE, seven molecules were inhibitors of AChE holding IC50?=?4.3–12.8?M with three of them as significant inhibitors of this enzyme. The results have shown trans 2-mono-unsaturated fatty acids are better inhibitors for AChE than their saturated analogs. Furthermore, the screening results indicate that the chain length is crucial for obtaining an inhibitory efficacy. The best results were obtained for (2E) eicosenoic acid (14) showing inhibition constants Ki?=?1.51?±?0.09?M and Ki′?=?7.15?±?0.55?M. All tested compounds were mixed-type inhibitors with a dominating competitive part. Molecular modelling calculations indicate a different binding mode of active/inactive compounds for the enzymes AChE and BChE.  相似文献   

20.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号