首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenorhabdus and Photorhabdus species are entomopathogenic bacteria with a wide insect host range, that belong to the family Enterobacteriaceae. Xenorhabdus and Photorhabdus species symbiotically associate with nematodes of the families Steinernematidae and Heterorhabditidae respectively. The factor(s) determining the symbiotic interaction between nematodes and bacteria are yet to be identified. Xenorhabdus and Photorhabdus species exist in two main phenotypic forms, a phenomenon known as phase variation. The phase I (or primary form) varies from phase II (or secondary form) in certain physiological and morphological characteristics. There is no variation in the DNA integrity of phase I and phase II and this supports epigenetic regulatory mechanism in phase variation. Certain pathogenic determinants such as pili, lipopolysaccharides and toxins contribute to the pathogenicity of Xenorhabdus and Photorhabdus species, and both appear to be equally pathogenic to insects. The observed similarity in their virulence to insect hosts may reflect possible in vivo conversion of phase II to phase I, however the host cellular invasion and virulence is yet to be properly understood. The virulence of Xenorhabdus variants varies among insects apparently due to factors which include the feeding habits of the insects. The molecular mechanism and biological significance of phase variation are presently unknown.  相似文献   

2.
Xenorhabdus nematophilus sp., an insect-pathogenic bacterium, was newly isolated from Korean entomopathogenic nematode ofSteinernema carpocapsae, which can be used as a useful bioinsecticide. Primary and secondary form variants ofXenorhabdus nematophilus were observed when culturedin vitro. Primary form variants adsorbed bromothymol blue, while secondary form did not. However, many other characters of two variants were very similar. The variants were all rod-shaped and cell size was highly variable ranging from 0.5 by 2.0 μm to 1.0 by 5.0 μm. Both produced highly toxic substances and killed the insect larva within 20–38 hr, indicating that insect pathogenicity ofXenorhabdus is not directly associated with its phase variation. In addition, cell-free culture supernatant ofXenorhabdus was sufficient to kill the insect larva by injecting it into insect hemolymph; however, cell-harboring culture broth was more effective for killing the insect. The use ofXenorhabdus nematophilus may provide a potential alternative toBacillus thuringiensis (Bt) toxins.  相似文献   

3.
The symbiotic bacterium strain, SK-1 isolated from Steinernema kushidai, a new species of entomopathogenic nematode, was compared with other strains of Xenorhabdus species. Like other Xenorhabdus nematophilus strains, this new strain is gram-negative, facultatively anaerobic, peritrichously flagellated rod and negative for catalase and nitrate reduction. It can be distinguished from the other Xenorhabdus spp. by differences in reactions to phenylalanine deaminase, no acid production from myo-inositol and utilizations of inosine, dl-malate, formate and methanol. Intra-haemocoelic injection of actual cells or liquid culture supernatant into sixth instar larvae of Spodoptera litura for either Phase I or II variants were not pathogenic. Other strains of X. nematophilus showed pathogenicity for whole cell injections. The supernatants of strain D-1 and ATCC 19061, which are symbionts of Steinernema carpocapsae were pathogenic, however pathogenicity decreased and then terminated by increases in temperature.  相似文献   

4.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

5.
[背景] 灰葡萄孢(Botrytis cinerea)是引起葡萄采后病害的主要病原菌之一,严重影响葡萄的贮期和品质,给葡萄产业带来极大损失。利用拮抗微生物抑制采后病原菌生长已逐渐成为防治葡萄采后灰霉病的重要手段。[目的] 利用昆虫病原线虫共生细菌广谱高效的抑菌特性,从现有共生细菌资源中筛选对灰葡萄孢具有高拮抗作用的菌株,为葡萄采后灰霉病的抑制提供新的材料和研究方向。[方法] 通过平板对峙培养法和菌丝生长速率法分离筛选拮抗共生细菌,并对优选的高效拮抗共生细菌进行16S rRNA基因序列进化分析,采用扫描电镜观察其对灰葡萄孢菌丝生长的影响,利用损伤接种法对红地球葡萄防治效果进行验证。[结果] 初步分离筛选共获得9株拮抗菌,复筛与复测得到一株抑菌效果显著的共生细菌(命名为ALL),经进化分析其为嗜线虫致病杆菌(Xenorhabdus nematophila),其16S rRNA基因序列的Genbank登录号为MW488402,与菌株Xenorhabdus nematophi la NC116聚于同一分支,相似性达99.79%。扫描电镜观察该菌株导致灰葡萄孢菌丝扭曲变形、表面皱缩、失水塌陷,该菌株发酵(36 h)上清液浓度为1%时对灰葡萄孢菌丝抑制率达44.5%。在葡萄常温防效实验中,与对照组比较,ALL菌株发酵上清液对灰霉菌防治效果较好,3 d后防效为63.50%。[结论] 本研究应用昆虫病原线虫共生细菌生物防治葡萄贮期灰霉病,筛选出一株高效拮抗灰葡萄孢的昆虫病原线虫共生细菌,而且其上清液对灰葡萄孢具有良好的抑制效果,为生物防治贮期葡萄灰霉病提供了新的生物材料和相关研究基础。  相似文献   

6.
In this study, we evaluated the effect of entomopathogenic nematodes (EPNs) Steinernema carpocapsae, Steinernema feltiae and Heterorhabditis bacteriophora, symbiotically associated with bacteria of the genera Xenorhabdus or Photorhabdus, on the survival of eight terrestrial isopod species. The EPN species S. carpocapsae and H. bacteriophora reduced the survival of six isopod species while S. feltiae reduced survival for two species. Two terrestrial isopod species tested (Armadillidium vulgare and Armadillo officinalis) were found not to be affected by treatment with EPNs while the six other isopod species showed survival reduction with at least one EPN species. By using aposymbiotic S. carpocapsae (i.e. without Xenorhabdus symbionts), we showed that nematodes can be isopod pathogens on their own. Nevertheless, symbiotic nematodes were more pathogenic for isopods than aposymbiotic ones showing that bacteria acted synergistically with their nematodes to kill isopods. By direct injection of entomopathogenic bacteria into isopod hemolymph, we showed that bacteria had a pathogenic effect on terrestrial isopods even if they appeared unable to multiply within isopod hemolymphs. A developmental study of EPNs in isopods showed that two of them (S. carpocapsae and H. bacteriophora) were able to develop while S. feltiae could not. No EPN species were able to produce offspring emerging from isopods. We conclude that EPN and their bacteria can be pathogens for terrestrial isopods but that such hosts represent a reproductive dead-end for them. Thus, terrestrial isopods appear not to be alternative hosts for EPN populations maintained in the absence of insects.  相似文献   

7.
We present results from epifluorescence, differential interference contrast, and transmission electron microscopy showing that Xenorhabdus nematophila colonizes a receptacle in the anterior intestine of the infective juvenile (IJ) stage of Steinernema carpocapsae. This region is connected to the esophagus at the esophagointestinal junction. The process by which X. nematophila leaves this bacterial receptacle had not been analyzed previously. In this study we monitored the movement of green fluorescent protein-labeled bacteria during the release process. Our observations revealed that Xenorhabdus colonizes the distal region of the receptacle and that exposure to insect hemolymph stimulated forward movement of the bacteria to the esophagointestinal junction. Continued exposure to hemolymph caused a narrow passage in the distal receptacle to widen, allowing movement of Xenorhabdus down the intestine and out the anus. Efficient release of both the wild type and a nonmotile strain was evident in most of the IJs incubated in hemolymph, whereas only a few IJs incubated in nutrient-rich broth released bacterial cells. Incubation of IJs in hemolymph treated with agents that induce nematode paralysis dramatically inhibited the release process. These results suggest that bacterial motility is not required for movement out of the distal region of the receptacle and that hemolymph-induced esophageal pumping provides a force for the release of X. nematophila out of the receptacle and into the intestinal lumen.  相似文献   

8.
Using 16S rDNA gene sequencing technique, three different species of non-symbiotic bacteria of entomopatho-genic nematodes (EPNs) (Steinernema sp.and Heterorhabditis sp.) were isolated and identified from infected insect cadavers(Galleria mellonella larvae) after 48-hour post infections.Sequence similarity analysis revealed that the strains SRK3, SRK4 and SRK5 belong to Ochrobactrum cytisi,Schineria larvae and Ochrobactrum anthropi,respectively.The isolates O.anthropi and S.larvae were found to be associated with Heterorhabditis indica strains BDU-17 and Yer-136,respectively,whereas O.cytisi was associated with Steinernema siamkayai strain BDU-87. Phenotypically, temporal EPN bacteria were fairly related to symbiotic EPN bacteria (Photorhabdus and Xenorhabdus genera). The strains SRK3 and SRK5 were phylogeographically similar to several non-symbionts and contaminated EPN bacteria isolated in Germany(LMG3311T) and China (X-14),while the strain SRK4 was identical to the isolates of S.larvae (L1/57,L1/58, L1/68 and L2/11) from Wohlfahrtia magnifica in Hungary.The result was further confirmed by RNA secondary structure and minimum energy calculations of aligned sequences.This study suggested that the non-symbionts of these nematodes are phylogeographically diverged in some extent due to phase variation.Therefore,these strains are not host-dependent, but environment-specific isolates.  相似文献   

9.
The rhabditid nematodes Steinernema carpocapsae and Steinernema feltiae are used in biological control of insect pests. Mass production is done in liquid culture media pre-incubated with their bacterial symbionts Xenorhabdus nematophila and Xenorhabdus bovienii, respectively, before nematode dauer juveniles (DJs) are inoculated. As a response to food signals produced by the bacterial symbionts, the DJs exit from the developmentally arrested dauer stage (they recover development) and grow to adults, which produce DJ offspring. Variable DJ recovery after inoculation often causes process failure due to non-synchronous population development and low numbers of adult nematodes. This contribution investigated the influence of the bacterial cell density on DJ recovery and development to adults. At higher density of 1010 bacterial cells ml−1, a higher percentage of DJ recovery was induced, and adults occurred earlier in both Steinernema spp. than at lower density of 109 and 108 cells ml−1. Xenorhabdus symbionts produce phase variants. Recovery in bacteria-free supernatants was lower than in supernatants containing bacterial cells for both primary and secondary phase Xenorhabdus spp. and lower in secondary than in primary phase supernatants or cell suspensions. In general, recovery was lower for Steinernema feltiae and the time at which 50% of the population had recovered after exposure to the food signal was longer (RT50 = 17.1 h) than for Steinernema carpocapsae (RT50 = 6.6 h). Whereas >90% S. carpocapsae DJs recovered in hemolymph serum of the lepidopteran insect Galleria mellonella, recovery of S. feltiae only reached 31%. Penetration into a host insect prior to exposure to the insect’s food signal did not enhance DJ recovery. Consequences for liquid culture mass production of the nematodes and differences between species of the genera Steinernema and Heterorhabditis are discussed.  相似文献   

10.
Because susceptibility of white grub species to entomopathogenic nematodes differs, we compared the virulence of Photorhabdus temperata and Xenorhabdus koppenhoeferi, the symbiotic bacteria of the nematodes Heterorhabditis bacteriophora and Steinernema scarabaei, respectively, to the three white grub species, Popillia japonica, Rhizotrogus majalis, and Cyclocephala borealis. Both bacteria were pathogenic to all three grub species even at 2 cells/grub. However, the median lethal dose at 48 h post injection and median lethal time at 20 cells/grub showed that P. temperata was more virulent than X. koppenhoeferi to C. borealis. Although H. bacteriophora is less pathogenic than S. scarabaei to R. majalis and P. japonica, their symbiotic bacteria did not differ in virulence against these two grub species, and they also showed similar growth patterns both in vitro and inside R. majalis larvae at 20 °C. We then tested the pathogenicity of oral- and intrahemocoel-introduced H. bacteriophora to R. majalis to determine whether nematodes are able to successfully vector the bacteria into the hemolymph. Hemocoel injected H. bacteriophora was pathogenic to R. majalis indicating successful bacterial release, but orally introduced H. bacteriophora were not. Dissection of grubs confirmed that the orally introduced H. bacteriophora were unable to penetrate into the hemolymph through the gut wall. We conclude that the low susceptibility of R. majalis to H. bacteriophora is not due to the symbiotic bacteria but rather to the nematode’s poor ability to penetrate through the gut wall and the cuticle to vector the bacteria into the hemolymph.  相似文献   

11.
The symbiotic interaction between Steinernema carpocapsae and Xenorhabdus nematophila was investigated by comparing the reproduction, morphology, longevity, behavior, and efficacy of the infective juvenile (IJ) from nematodes reared on mutant or wild-type bacterium. Nematodes reared on the mutant X. nematophila HGB151, in which an insertion of the bacterial gene, rpoS, eliminates the retention of the bacterium in the intestinal vesicle of the nematode, produced IJs without their symbiotic bacterium. Nematodes reared on the wild-type bacterium (HGB007) produced IJs with their symbiotic bacterium. One or the other bacterial strain injected into Galleria mellonella larvae followed by exposing the larvae to IJs that were initially symbiotic bacterium free produced progeny IJs with or without their Xenorhabdus-symbiotic bacterium. The two bacterial strains were not significantly different in their effect on IJ production, sex ratio, or IJ morphology. IJ longevity in storage was not influenced by the presence or absence of the bacterial symbiont at 5 and 15 °C, but IJs without their bacterium had greater longevity than IJs with their bacterium at 25 and 30 °C, suggesting that there was a negative cost to the nematode for maintaining the bacterial symbiont at these temperatures. IJs with or without their symbiotic bacterium were equally infectious to Spodoptera exigua larvae in laboratory and greenhouse and across a range of soil moistures, but the absence of the bacterial symbiont inhibited nematodes from producing IJ progeny within the host cadavers. In some situations, such as where no establishment of an alien entomopathogenic nematode is desired in the environment, the use of S. carpocapsae IJs without their symbiotic bacterium may be used to control some soil insect pests.  相似文献   

12.
Xenorhabdus spp. and Photorhabdus spp. are major insect bacterial pathogens symbiotically associated with nematodes. These bacteria are transported by their nematode hosts into the hemocoel of the insect prey, where they proliferate within hemolymph. In this work we report that wild strains belonging to different species of both genera are able to produce hemolysin activity on blood agar plates. Using a hemocyte monolayer bioassay, cytolytic activity against immunocompetent cells from the hemolymph of Spodoptera littoralis (Lepidoptera: Noctuidae) was found only in supernatants of Xenorhabdus; none was detected in supernatants of various strains of Photorhabdus. During in vitro bacterial growth of Xenorhabdus nematophila F1, two successive bursts of cytolytic activity were detected. The first extracellular cytolytic activity occurred when bacterial cells reached the stationary phase. It also displayed a hemolytic activity on sheep red blood cells, and it was heat labile. Among insect hemocyte types, granulocytes were the preferred target. Lysis of hemocytes by necrosis was preceded by a dramatic vacuolization of the cells. In contrast the second burst of cytolytic activity occurred late during stationary phase and caused hemolysis of rabbit red blood cells, and insect plasmatocytes were the preferred target. This second activity is heat resistant and produced shrinkage and necrosis of hemocytes. Insertional inactivation of flhD gene in X. nematophila leads to the loss of hemolysis activity on sheep red blood cells and an attenuated virulence phenotype in S. littoralis (A. Givaudan and A. Lanois, J. Bacteriol. 182:107–115, 2000). This mutant was unable to produce the early cytolytic activity, but it always displayed the late cytolytic effect, preferably active on plasmatocytes. Thus, X. nematophila produced two independent cytolytic activities against different insect cell targets known for their major role in cellular immunity.  相似文献   

13.
Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode’s mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of bacterial growth could explain differences in CO2 production over the course of host infection. Growth of Xenorhabdus cabanillasii isolated from Steinernema riobrave exhibited the characteristic exponential and stationary growth phases. Other non-nematode symbiotic bacteria were also found in infected hosts and exhibited similar growth patterns to X. cabanillasii. Galleria mellonella larvae infected with S. riobrave produced two distinct peaks of CO2 occurring at 25.6–36 h and 105–161 h post-infection, whereas larvae injected with X. cabanillasii alone showed only one peak of CO2, occurring at 22.8–36.2 h post-injection. Tenebrio molitor larvae infected with S. riobrave or injected with bacteria alone exhibited only one peak of CO2 production, which occurred later during S. riobrave infection (41.4–64.4 h post-infection compared to 20.4–35.9 h post-injection). These results indicate a relationship between bacterial growth and the first peak of CO2 in both host species, but not for the second peak exhibited in G. mellonella.  相似文献   

14.
15.
Summary The product of the ompR gene of E. coli K12 is a positive regulatory protein, which is needed for the expression of the major outer membrane proteins OmpC and OmpF in E. coli K12. A simple in vivo technique was used to transfer three ompR mutations (ompR101, ompR472, ompR4) onto a multicopy plasmid carrying the wild-type ompR gene. The resulting clones were transformed into wild type and corresponding mutant back-grounds to analyze their effects on ompC and ompF expression. All of the cloned ompR mutant alleles exhibited a dominant OmpC- phenotype in an ompR +background. In addition negative complementation of ompF expression was observed between chromosomal ompR4 and multicopy ompR101 alleles. The results suggest an interaction between different OmpR molecules, and thereby support the idea that OmpR can exist as a multimeric protein.  相似文献   

16.
The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.  相似文献   

17.
Summary We have fortuitously created an in-frame insertion mutation in the cloned ompR gene of Escherichia coli in the course of an experiment involving linker insertion mutagenesis. According to the DNA sequence, the mutant protein has an insertion at the 53rd amino acid residue, which replaced the original valine, with the sequence Ala-Leu-Glu. The expression level of the mutant protein, OmpRX6, in a minicell system, is similar to that of the wild-type protein and the size of the mutant is slightly larger than the wild type by approxiately 300 daltons. This mutant was completely unable to activate porin expression as the wildtype does, and in addition, this phenotype was shown to be dominant over the wild type. Comparison of the amino acid sequence of OmpRX6 with those of a family of homologous bacterial regulatory proteins revealed that the mutation lies in a domain which is highly conserved among these proteins.  相似文献   

18.
19.
Eighteen Xenorhabdus isolates associated with Spanish entomopathogenic nematodes of the genus Steinernema were characterized using a polyphasic approach including phenotypic and molecular methods. Two isolates were classified as Xenorhabdus nematophila and were associated with Steinernema carpocapsae. Sixteen isolates were classified as Xenorhabdus bovienii, of which fifteen were associated with Steinernema feltiae and one with Steinernema kraussei. Two X. bovienii Phase II were also isolated, one instable phase isolated from S. feltiae strain Rioja and one stable phase from S. feltiae strain BZ. Four representative bacterial isolates were chosen to study their pathogenicity against Spodoptera littoralis with and without the presence of their nematode host. The four bacterial isolates were pathogenic for S. littoralis leading to septicemia 24 h post-injection and killing around 90% of the insect larvae 36 h post-injection, except for that isolated from S. kraussei. After 48 h of injection, this latter isolate showed a lower final population in the larval hemolymph (107 instead of 108 CFU per larvae) and a lower larval mortality (70% instead of 95-100%). The virulence of the nematode-bacteria complexes against S. littoralis showed similar traits with a significant insect larvae mortality (80-90%) 5 days post-infection except for S. kraussei, although this strain reached similar of larval mortality at 7 days after infection.  相似文献   

20.
The gammaproteobacterium Xenorhabdus nematophila engages in a mutualistic association with an entomopathogenic nematode and also functions as a pathogen toward different insect hosts. We studied the role of the growth-phase-regulated outer membrane protein OpnS in host interactions. OpnS was shown to be a 16-stranded β-barrel porin. opnS was expressed during growth in insect hemolymph and expression was elevated as the cell density increased. When wild-type and opnS deletion strains were coinjected into insects, the wild-type strain was predominantly recovered from the insect cadaver. Similarly, an opnS-complemented strain outcompeted the ΔopnS strain. Coinjection of the wild-type and ΔopnS strains together with uncolonized nematodes into insects resulted in nematode progeny that were almost exclusively colonized with the wild-type strain. Likewise, nematode progeny recovered after coinjection of a mixture of nematodes carrying either the wild-type or ΔopnS strain were colonized by the wild-type strain. In addition, the ΔopnS strain displayed a competitive growth defect when grown together with the wild-type strain in insect hemolymph but not in defined culture medium. The ΔopnS strain displayed increased sensitivity to antimicrobial compounds, suggesting that deletion of OpnS affected the integrity of the outer membrane. These findings show that the OpnS porin confers a competitive advantage for the growth and/or the survival of X. nematophila in the insect host and provides a new model for studying the biological relevance of differential regulation of porins in a natural host environment.The bacterium Xenorhabdus nematophila forms a mutualistic association with the entomopathogenic nematode Steinernema carpocapsae (2). The nonfeeding infective juvenile form of the nematode (IJ) exists in the soil and carries the bacteria in a specialized receptacle region in the anterior intestine (4, 39). The IJ invades susceptible insect species and enters the hemocoel, where exposure to insect hemolymph stimulates the movement of bacteria down the intestine and out of the anus (36, 39). Together, the nematode and bacteria kill the insect host. X. nematophila not only helps to kill the insect but also promotes bioconversion of host macromolecules and tissues to provide nutrients for nematode reproduction and secretes diverse antimicrobial products to suppress competition for the nutrient resources of the insect cadaver (11, 13, 18, 19, 38). In turn, the nematode vectors X. nematophila to new insect hosts and protects it from the competitive environment of the soil. Colonization of the nematode receptacle is predominantly a monoculture process that is initiated by a single cell followed by bacterial proliferation (24, 39). The level of colonization varies from a few cells to several hundreds per nematode and is higher in nematodes reproducing in insects than on bacterial lawns, suggesting that the insect environment provides additional nutrients for bacterial growth (16, 39).Hydrophilic nutrients and antibiotics passively diffuse across the outer membrane of gram-negative bacteria through general porins and substrate-specific channels (17, 29). The most extensively studied general porins, OmpF and OmpC of Escherichia coli (30), are 16-stranded β-barrel proteins that are reciprocally regulated by changes in external osmolarity (12, 21, 41). Although the flow rate through OmpF is greater than OmpC (28), comparison of the resolved crystal structures does not reveal significant physiochemical differences between the two porins (3). The biological significance of the differential regulation of porins with distinct functional properties remains unclear. The major outer membrane protein of X. nematophila, OpnP, was shown to be produced at high levels in exponentially growing cells and is a homologue of OmpF and OmpC (14). OpnP production was not affected by changes in medium osmolarity, and the flow rate measured for the OpnP porin was more similar to the restrictive porin OmpC than to the more permissive OmpF porin (3). As cells transitioned to stationary phase, de novo synthesis of OpnP decreased, while the synthesis of the outer membrane protein, designated OpnS, increased (15, 22).Porin function and regulation have been studied in both pathogenic and symbiotic bacteria. In Vibrio cholerae two well-studied porins, OmpU and OmpT, that possess distinct functional properties have been shown to be differentially regulated (37). OmpU confers resistance to sodium deoxycholate (DC), a major component of bile, as well as polymixin B, detergents, and antimicrobial peptides, while the expression of OmpT alone sensitizes the cell to DC (26, 33). OmpU was thought to be expressed when V. cholerae colonizes the intestine, suggesting that it was required for host colonization (33); however, subsequent findings indicated that neither OmpU nor OmpT were essential for intestinal colonization (34). Recent findings indicated that OmpU may sense membrane perturbations and activate DegS which in turn modulates σE activity (25, 26). In the symbiotic bacterium Vibrio fischeri the deletion of ompU was shown to reduce the efficiency of colonization of the light organ of the Euprymna scolopes squid and increase sensitivity to bile, antimicrobial peptides, and detergent (1). Interestingly, the ompU strain did not display a competitive defect for colonization in the presence of the wild-type strain.In the present study the growth-phase-regulated outer membrane protein OpnS of X. nematophila was identified as a general porin that conferred a competitive advantage for growth in the insect host. OpnP and OpnS were the only general porins identified in the genome of X. nematophila. The reciprocal expression of OpnP and OpnS suggest that they serve distinct biological roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号