首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles   总被引:1,自引:0,他引:1  
RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1's mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1-conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.  相似文献   

2.
MCAK is a member of the kinesin-13 family of microtubule (MT)-depolymerizing kinesins. We show that the potent MT depolymerizer MCAK tracks (treadmills) with the tips of polymerizing MTs in living cells. Tip tracking of MCAK is inhibited by phosphorylation and is dependent on the extreme COOH-terminal tail of MCAK. Tip tracking is not essential for MCAK's MT-depolymerizing activity. We propose that tip tracking is a mechanism by which MCAK is preferentially localized to regions of the cell that modulate the plus ends of MTs.  相似文献   

3.
Dynamic microtubules (MTs) are essential for various intracellular events, such as mitosis. In Drosophila melanogaster S2 cells, three MT tip-localizing proteins, Msps/XMAP215, EB1, and Sentin (an EB1 cargo protein), have been identified as being critical for accelerating MT growth and promoting catastrophe events, thus resulting in the formation of dynamic MTs. However, the molecular activity of each protein and the basis of the modulation of MT dynamics by these three factors are unknown. In this paper, we showed in vitro that XMAP215msps had a potent growth-promoting activity at a wide range of tubulin concentrations, whereas Sentin, when recruited by EB1 to the growing MT tip, accelerated growth and also increased catastrophe frequency. When all three factors were combined, the growth rate was synergistically enhanced, and rescue events were observed most frequently, but frequent catastrophes restrained the lengthening of the MTs. We propose that MT dynamics are promoted by the independent as well as the cooperative action of XMAP215msps polymerase and the EB1–Sentin duo.  相似文献   

4.
Accurate chromosome segregation is essential to ensure genomic stability because the aneuploidy that results from segregation errors leads to birth defects and contributes to the development of cancer. Chromosome segregation is directed by the kinetochore, the chromosomal site of attachment to dynamic polymers called microtubules (MTs). Although the fidelity of chromosome segregation depends on precise interactions between kinetochores and MTs, it is still unclear how this interaction is mediated and regulated. Here we discuss current progress in determining how kinetochores assemble and attach to MTs during mitosis as well as how they correct errors.  相似文献   

5.
The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.  相似文献   

6.
Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity.  相似文献   

7.
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs.  相似文献   

8.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8 and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientationdeficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. the spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.Key words: spindle assembly checkpoint, kinetochore-microtubule attachments, biorientation, DAM1-765  相似文献   

9.
Nuclear pore complexes (NPCs) mediate all nucleocytoplasmic traffic and provide docking sites for the spindle assembly checkpoint (SAC) protein Mad1p. Upon SAC activation, Mad1p is recruited onto kinetochores and rapidly cycles between NPCs and kinetochores. We examined the mechanism of Mad1p movement onto kinetochores and show that it is controlled by two components of the nuclear transport machinery, the exportin Xpo1p and Ran–guanosine triphosphate (GTP). Mad1p contains a nuclear export signal (NES) that is recognized by Xpo1p. The NES, Xpo1p, and RanGTP are all required for Mad1p recruitment onto kinetochores in checkpoint-activated cells. Consistent with this function, Xpo1p also accumulates on kinetochores after SAC activation. We have also shown that Xpo1p and RanGTP are required for the dynamic cycling of Mad1p between NPCs and kinetochores in checkpoint-arrested cells. These results reveal an important function for Xpo1p in mediating intranuclear transport events and identify a signaling pathway between kinetochores and NPCs.  相似文献   

10.
11.
EB1 targets to polymerizing microtubule ends, where it is favorably positioned to regulate microtubule polymerization and confer molecular recognition of the microtubule end. In this study, we focus on two aspects of the EB1-microtubule interaction: regulation of microtubule dynamics by EB1 and the mechanism of EB1 association with microtubules. Immunodepletion of EB1 from cytostatic factor-arrested M-phase Xenopus egg extracts dramatically reduced microtubule length; this was complemented by readdition of EB1. By time-lapse microscopy, EB1 increased the frequency of microtubule rescues and decreased catastrophes, resulting in increased polymerization and decreased depolymerization and pausing. Imaging of EB1 fluorescence revealed a novel structure: filamentous extensions on microtubule plus ends that appeared during microtubule pauses; loss of these extensions correlated with the abrupt onset of polymerization. Fluorescent EB1 localized to comets at the polymerizing plus ends of microtubules in cytostatic factor extracts and uniformly along the lengths of microtubules in interphase extracts. The temporal decay of EB1 fluorescence from polymerizing microtubule plus ends predicted a dissociation half-life of seconds. Fluorescence recovery after photobleaching also revealed dissociation and rebinding of EB1 to the microtubule wall with a similar half-life. EB1 targeting to microtubules is thus described by a combination of higher affinity binding to polymerizing ends and lower affinity binding along the wall, with continuous dissociation. The latter is likely to be attenuated in interphase. The highly conserved effect of EB1 on microtubule dynamics suggests it belongs to a core set of regulatory factors conserved in higher organisms, and the complex pattern of EB1 targeting to microtubules could be exploited by the cell for coordinating microtubule behaviors.  相似文献   

12.
Giardia lamblia, with two nuclei and a distinct polarized morphology, is an interesting organism for investigating how distribution of its microtubule (MT) is controlled during its cell cycle. In this study, we identified the end-binding protein 1 (EB1) of G. lamblia, a well-known microtubule-associated protein that organizes MTs in eukaryotes. Immunofluorescence assays using recombinant EB1 (rEB1)-specific antibodies demonstrated EB1 localization in nuclear membrane as well as in some cytoskeletal structures such as axomenes and median bodies of trophozoites of G. lamblia. Complementation experiments using the BIM1 knock-out mutant of yeast, the yeast homolog of mammalian EB1, showed that giardial EB1 was able to carry out a homologous function in controlling MT dynamics. In addition, rEB1 of G. lamblia co-precipitated with MTs by an in vitro binding assay, thereby demonstrating that G. lamblia EB1 is a MT-associated protein. These results, taken together, suggest that G. lamblia EB1 is a functional homolog of eukaryotic EB1 and is likely to be a determinant for MT distribution.  相似文献   

13.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8, and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientation-deficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. The spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. Progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.  相似文献   

14.
《The Journal of cell biology》1994,127(4):995-1008
Kinetochores are structures that assemble on centromeric DNA and mediate the attachment of chromosomes to the microtubules of the mitotic spindle. The protein components of kinetochores are poorly understood, but the simplicity of the S. cerevisiae kinetochore makes it an attractive candidate for molecular dissection. Mutations in genes encoding CBF1 and CBF3, proteins that bind to yeast centromeres, interfere with chromosome segregation in vivo. To determine the roles played by these factors and by various regions of centromeric DNA in kinetochore function, we have developed a method to partially reassemble kinetochores on exogenous centromeric templates in vitro and to visualize the attachment of these reassembled kinetochore complexes to microtubules. In this assay, single reassembled complexes appear to mediate microtubule binding. We find that CBF3 is absolutely essential for this attachment but, contrary to previous reports (Hyman, A. A., K. Middleton, M. Centola, T.J. Mitchison, and J. Carbon. 1992. Microtubule- motor activity of a yeast centromere-binding protein complex. Nature (Lond.). 359:533-536) is not sufficient. Additional cellular factors interact with CBF3 to form active microtubule-binding complexes. This is mediated primarily by the CDEIII region of centromeric DNA but CDEII plays an essential modulatory role. Thus, the attachment of kinetochores to microtubules appears to involve a hierarchy of interactions by factors that assemble on a core complex consisting of DNA-bound CBF3.  相似文献   

15.
Mps1 is an upstream component of the spindle assembly checkpoint, which, in human cells, is required for checkpoint activation in response to spindle damage but not apparently during an unperturbed mitosis. Mps1 also recruits Mad1 and Mad2 to kinetochores. However, whether the enzymatic activity of Mps1 is required for these processes is unclear. To address this question, we established an RNA interference (RNAi) complementation assay. Repression of Mps1 triggers premature anaphase, often with unaligned or maloriented chromosomes. This phenotype is rescued by an RNAi-resistant wild-type Mps1 transgene but not by a catalytically inactive mutant. An analogue-sensitive allele, Mps1(M602A), also rescues the RNAi-induced defect, but not when inhibited by the adenosine triphosphate analogue 1-NM-PP1. Thus, Mps1 activity does restrain anaphase during an unperturbed mitosis. Furthermore, although catalytically inactive Mps1 can restore kinetochore localization of Mad1, only the active kinase restores Mad2 localization. Thus, in human cells, Mps1 catalytic activity is required for spindle checkpoint function and recruitment of Mad2.  相似文献   

16.
The present study was designed to investigate subcellular localization of MAD2 in rat oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at germinal vesicle (GV), prometaphase I (ProM-I), metaphase I (M-I), anaphase I (A-I), telophase I (T-I), and metaphase II (M-II) were fixed and immunostained for MAD2, kinetochores, microtubules and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes from GV to M-II stages were treated by a microtubule disassembly drug, nocodazole, or treated by a microtubule stabilizer, Taxol, before examination. Anti-MAD2 antibody was also injected into the oocytes at GV stage and the injected oocytes were cultured for 6 h for examination of chromosome alignment and spindle formation. It was found that MAD2 was at the kinetochores in the oocytes at GV and ProM-I stages. Once the oocytes reached M-I stage in which an intact spindle was formed and all chromosomes were aligned at the equator of the spindle, MAD2 disappeared. However, when oocytes from GV to M-II stages were treated by nocodazole, spindles were destroyed and MAD2 was observed in all treated oocytes. When nocodazole-treated oocytes at M-I and M-II stages were washed and cultured for spindle recovery, it was found that, once the relationship between microtubules and chromosomes was established, MAD2 disappeared in the oocytes even though some chromosomes were not aligned at the equator of the spindle. On the other hand, when oocytes were treated with Taxol, MAD2 localization was not changed and was the same as that in the control. However, immunoblotting of MAD2 indicated that MAD2 was present in the oocytes at all stages; nocodazole and Taxol treatment did not influence the quantity of MAD2 in the cytoplasm. Significantly higher proportions of anti-MAD2 antibody-injected oocytes proceeded to premature A-I stage and more oocytes had misaligned chromosomes in the spindles. The present study indicates that MAD2 is a spindle checkpoint protein in rat oocytes during meiosis. When the spindle was destroyed by nocodazole, MAD2 was reactivated in the oocytes to overlook the attachment between chromosomes and microtubules. However, in this case, MAD2 could not check unaligned chromosomes in the recovered spindles, suggesting that a normal chromosome alignment is maintained only in the oocytes without any microtubule damages during maturation.  相似文献   

17.
Summary— The dynamics and organization of microtubules associated with axonemes and kinetochores in vitro were visualized using video microscopy techniques. Microtubules attached either at the ends of axonemes or to mitotic chromosomes behave accordining to dynamic instability in our conditions. Microtubules attached to kinetochores showed lower rates of elongation and shortening than those nucleated by axonemes in the same conditions. In addition, elementary bundles of microtubules appeared spontaneously in association with kinetochores, with microtubules elongating along previously attached microtubules at even lower rates. Such side interactions, either spontaneous or stabilized by factors such as MAPs, might affect microtubule dynamics directly.  相似文献   

18.
The correct formation of stable but dynamic links between chromosomes and spindle microtubules (MTs) is essential for accurate chromosome segregation. However, the molecular mechanisms by which kinetochores bind MTs and checkpoints monitor this binding remain poorly understood. In this paper, we analyze the functions of six kinetochore-bound MT-associated proteins (kMAPs) using RNAi, live-cell microscopy and quantitative image analysis. We find that RNAi-mediated depletion of two kMAPs, the adenomatous polyposis coli protein (APC) and its binding partner, EB1, are unusual in affecting the movement and orientation of paired sister chromatids at the metaphase plate without perturbing kinetochore-MT attachment per se. Quantitative analysis shows that misorientation phenotypes in metaphase are uniform across chromatid pairs even though chromosomal loss (CIN) during anaphase is sporadic. However, errors in kinetochore function generated by APC or EB1 depletion are detected poorly if at all by the spindle checkpoint, even though they cause chromosome missegregation. We propose that impaired EB1 or APC function generates lesions invisible to the spindle checkpoint and thereby promotes low levels of CIN expected to fuel aneuploidy and possibly tumorigenesis.  相似文献   

19.
Adenomatous polyposis coli protein (APC) is a well-characterized tumor suppressor protein [1] [2] [3]. We previously showed that APC tagged with green fluorescent protein (GFP) in Xenopus A6 epithelial cells moves along a subset of microtubules and accumulates at their growing plus ends in cell extensions [4]. EB1, which was identified as an APC-binding protein by yeast two-hybrid analysis [5], was also reported to be associated with microtubules [6] [7] [8]. To examine the interaction between APC and EB1 within cells, we compared the dynamic behavior of EB1-GFP with that of APC-GFP in A6 transfectants. Time-lapse microscopy of live cells at interphase revealed that EB1-GFP was concentrated at all of the growing microtubule ends throughout the cytoplasm and abruptly disappeared from the ends when microtubules began to shorten. Therefore, EB1 appeared to be co-localized and interact with APC on the growing ends of a subset of microtubules. When APC-GFP was overexpressed, endogenous EB1 was recruited to APC-GFP, which accumulated in large amounts on microtubules. On the other hand, when microtubules were disassembled by nocodazole, EB1 was not co-localized with APC-GFP, which was concentrated along the basal plasma membrane. During mitosis, APC appeared to be dissociated from microtubules, whereas EB1-GFP continued to concentrate at microtubule growing ends. These findings showed that the APC-EB1 interaction is regulated within cells and is allowed near the ends of microtubules only under restricted conditions.  相似文献   

20.
Chen D  Wang M  Zhou S  Zhou Q 《The EMBO journal》2002,21(24):6801-6810
Depletion of CD4(+) T cells is the hallmark of HIV infection and AIDS progression. In addition to the direct killing of the viral-infected cells, HIV infection also leads to increased apoptosis of predominantly uninfected bystander cells. This is mediated in part through the HIV-1 Tat protein, which is secreted by the infected cells and taken up by uninfected cells. Using an affinity-purification approach, a specific and direct interaction of Tat with tubulin and polymerized microtubules has been detected. This interaction does not affect the secretion and uptake of Tat, but is critical for Tat to induce apoptosis. Tat binds tubulin/microtubules through a four-amino-acid subdomain of its conserved core region, leading to the alteration of microtubule dynamics and activation of a mitochondria-dependent apoptotic pathway. Bim, a pro-apoptotic Bcl-2 relative and a transducer of death signals initiated by perturbation of microtubule dynamics, facilitates the Tat-induced apoptosis. Our findings reveal a strategy by which Tat induces apoptosis by targeting the microtubule network. Thus HIV-1 Tat joins a growing list of pathogen-derived proteins that target the cytoskeleton of host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号