首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 823 毫秒
1.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

2.
We document here the intrinsic fluorescence and 45Ca2+ binding properties of putative "E2P-related" complexes of Ca2+-free ATPase with fluoride, formed in the presence of magnesium, aluminum, or beryllium. Intrinsic fluorescence measurements suggest that in the absence of inhibitors, the ATPase complex with beryllium fluoride (but not those with magnesium or aluminum fluoride) does constitute an appropriate analog of the "ADP-insensitive" phosphorylated form of Ca2+-ATPase, the so-called "E2P" state. 45Ca2+ binding measurements, performed in the presence of 100 mm KCl, 5 mm Mg2+, and 20% Me2SO at pH 8, demonstrate that this ATPase complex with beryllium fluoride (but again not those with magnesium or aluminum fluoride) has its Ca2+ binding sites accessible for rapid, low affinity (submillimolar) binding of Ca2+ from the luminal side of SR. In addition, we specifically demonstrate that in this E2P-like form of ATPase, the presence of thapsigargin, 2,5-di-tert-butyl-1,4-dihydroxybenzene, or cyclopiazonic acid prevents 45Ca2+ binding (i.e. presumably prevents opening of the 45Ca2+ binding sites on the SR luminal side). Since crystals of E2P-related forms of ATPase have up to now been described in the presence of thapsigargin only, these results suggest that crystallizing an inhibitor-free E2P-like form of ATPase (like its complex with beryllium fluoride) would be highly desirable, to unambiguously confirm previous predictions about the exit pathway from the ATPase transmembrane Ca2+ binding sites to the SR luminal medium.  相似文献   

3.
Murray JW  Barber J 《Biochemistry》2006,45(13):4128-4130
Analysis of the anomalous X-diffraction data reported by Ferreira et al. (PDB entry 1S5L) for crystals of photosystem II isolated from Thermosynechococcus elongatus indicates that a calcium ion is bound to the PsbO protein. The Ca2+-binding site is located close to the lumenal exit of a putative proton channel leading from the water splitting site.  相似文献   

4.
A microsomal fraction rich in (Na+ + K+)ATPase activity has been isolated from the outer medulla of pig kidney. The ability of this preparation to form phosphoenzyme on incubation with [gamma-32P]ATP and to bind [3H]ouabain was studied when its sulfatide was hydrolyzed by arylsulfatase treatment. The K+-dependent hydrolysis of the Na+-dependent phosphorylated intermediate as well as the ouabain binding were inactivated in direct relation to the breakdown of sulfatide. Both characteristics of the (Na+ + K+)ATPase preparation, lost by arylsulfatase treatment, were partially restored by the sole addition of sulfatide. These experiments indicate that sulfatide may play a role in sodium ion transport either in the conformational transition of the K+-insensitive phosphointermediate, E1P, to the K+-sensitive intermediate, E2P, or in the configuration of the high-affinity binding site for K+ of the E2P form. In addition, this glycolipid may have a specific role in the proteolipidic subunit that binds ouabain.  相似文献   

5.
Vagin O  Denevich S  Munson K  Sachs G 《Biochemistry》2002,41(42):12755-12762
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.  相似文献   

6.
While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  相似文献   

7.
The steady-state kinetics of the K+, Ca2+, and Mg2+-activated adenosine triphosphatase (ATPase) activities of rabbit skeletal myosin were investigated in the substrate concentration range from 0.05 microM to 5 mM and found not to follow Michaelis-Menten kinetics but rather to display biphasic behavior. The Ca2+-ATPase activity of myosin chymotryptic subfragment-1 (S-1), which has only one active site, also exhibits biphasic kinetics, thus excluding the possibility that the biphasic behavior is caused by negative cooperativity between the two active sites of myosin. Myosin K+ and Mg2+-ATPase are both activated by 5'-adenyl methylenediphosphonate (AdoPP[CH2]P) in a competitive manner at high substrate concentrations; i.e. the maximal velocity observed at high substrate concentrations is independent of the AdoPP[CH2]P concentration. This result provides evidence for substrate activation via binding to a regulatory site. Pyrophosphate inhibits myosin ATPase in a competitive manner at low substrate concentrations and in an uncompetitive manner at high substrate concentrations, with the uncompetitive Ki being smaller than the competitive Ki; i.e. pyrophosphate binds more tightly to the effector site than to the active site.  相似文献   

8.
Homology modeling of gastric H,K-ATPase based on the E2 model of sarcoplasmic reticulum Ca2+-ATPase (Toyoshima, C., and Nomura, H. (2002) Nature 392, 835-839) revealed the presence of a single high-affinity binding site for K+ and an E2 form-specific salt bridge between Glu820 (M6) and Lys791 (M5). In the E820Q mutant this salt bridge is no longer possible, and the head group of Lys791, together with a water molecule, fills the position of the K+ ion and apparently mimics the K+-filled cation binding pocket. This gives an explanation for the K+-independent ATPase activity and dephosphorylation step of the E820Q mutant (Swarts, H. G. P., Hermsen, H. P. H., Koenderink, J. B., Schuurmans Stekhoven, F. M. A. H., and De Pont, J. J. H. H. M. (1998) EMBO J. 17, 3029-3035) and, indirectly, for its E1 preference. The model is strongly supported by a series of reported mutagenesis studies on charged and polar amino acid residues in the membrane domain. To further test this model, Lys791 was mutated alone and in combination with other crucial residues. In the K791A mutant, the K+ affinity was markedly reduced without altering the E2 preference of the enzyme. The K791A mutation prevented, in contrast to the K791R mutation, the spontaneous dephosphorylation of the E820Q mutant as well as its conformational equilibrium change toward E1. This indicates that the salt bridge is essential for high-affinity K+ binding and the E2 preference of H,K-ATPase. Moreover, its breakage (E820Q) can generate a K+-insensitive activity and an E1 preference. In addition, the study gives a molecular explanation for the electroneutrality of H,K-ATPases.  相似文献   

9.
The amphiphilic peptide mastoparan, isolated from wasp venom, is a potent inhibitor of the sarcoplasmic reticulum Ca2+-ATPase. At pH 7. 2, ATPase activity is inhibited with an inhibitory constant (Ki) of 1 +/- 0.13 microM. Mastoparan shifts the E2-E1 equilibrium toward E1 and may affect the regulatory ATP binding site. The peptide also decreases the affinity of the ATPase for Ca2+ and abolishes the cooperativity of Ca2+ binding. In the presence of mastoparan, the two Ca2+ ions bind independently of one another. Our results appear to support the model that describes the relationship between the two Ca2+ binding sites as "side-by-side," because this model allows the possibility of independent Ca2+ entry to the two sites. Mastoparan shifts the steady-state equilibrium between E1'Ca2 and E1'Ca2.P toward E1'Ca2.P, by possibly affecting the conformational change that follows ATP binding. The peptide also causes a reduction in the levels of phosphoenzyme formed from [32P]Pi. Some analogues of mastoparan were also tested and were found to cause inhibition of the Ca2+-ATPase in the range of 2-4 microM. The inhibitory action of mastoparan and its analogues appears dependent on their ability to form alpha-helices in membranes.  相似文献   

10.
In a previous paper [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227] we presented a kinetic model for the activity of the Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum. Here we extend the model to account for the effects on ATPase activity of Mg2+, cations and anions. We find that Mg2+ concentrations in the millimolar range inhibit ATPase activity, which we attribute to competition between Mg2+ and MgATP for binding to the nucleotide-binding site on the E1 and E2 conformations of the ATPase and on the phosphorylated forms of the ATPase. Competition is also suggested between Mg2+ and MgADP for binding to the phosphorylated form of the ATPase. ATPase activity is increased by low concentrations of K+, Na+ and NH4+, but inhibited by higher concentrations. It is proposed that these effects follow from an increase in the rate of dephosphorylation but a decrease in the rate of the conformational transition E1'PCa2-E2'PCa2 with increasing cation concentration. Li+ and choline+ decrease ATPase activity. Anions also decrease ATPase activity, the effects of I- and SCN- being more marked than that of Cl-. These effects are attributed to binding at the nucleotide-binding site, with a decrease in binding affinity and an increase in 'off' rate constant for the nucleotide.  相似文献   

11.
Defining the structural and catalytic properties of the ion transport site(s) of enzyme-phosphorylating ATPases is of key importance in understanding the mechanism of ion transport by these enzymes. In the case of the H+, K(+)-ATPase, SCH 28080 (3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2a]-pyridine) has been shown to act as a high affinity, extracytosolic, K(+)-competitive inhibitor of Mg2+, K(+)-ATPase activity (Wallmark, B., Briving, C., Fryklund, J., Munson, K., Jackson, R., Mendlein, J., Rabon, E., and Sachs, G. (1987) J. Biol. Chem. 262, 2077-2084). To define the nature of the SCH 28080-binding site in relation to the catalytic cycle of the enzyme, we have investigated the effects of this potential K+ transport site probe on the steady-state and partial reactions of the H+, K(+)-ATPase. In the absence of K+, SCH 28080 inhibits Mg2(+)-ATPase activity with high affinity (apparent Ki = 30 nM). Inhibition is due to K(+)-like prevention of phosphoenzyme formation. SCH 28080 has no effect on Mg2(+)-catalyzed dephosphorylation. SCH 28080, at concentrations less than 0.5 microM, increases the apparent Km for K+ for Mg2+, K(+)-ATPase activity with little effect on the maximum velocity. At higher concentrations of SCH 28080, reversal of inhibition by higher K+ concentrations is not complete, due to inhibition of ATPase activity by high K+. In contrast, SCH 28080 inhibits K(+)-stimulated dephosphorylation by competitively displacing K+ from phosphoenzyme with an extracytosolic conformation of the monovalent cation site (E2P) at low concentrations of SCH 28080 and K+. At higher concentrations, 10 microM SCH 28080 and 50 mM K+, a slowly dephosphorylating complex with both SCH 28080 and K+ bound to E2P may form which represents a small fraction of the total E2P (15-25%). Preincubation of SCH 28080 with E2P completely blocks K(+)-stimulated dephosphorylation, and K+ is unable to reverse this preincubation effect, indicating that the SCH 28080 dissociation rate is at least as slow as K(+)-independent dephosphorylation of E2P. These findings indicate that SCH 28080 inhibits K(+)-stimulated ATPase activity by competing with K+ for binding to E2P and blocking K(+)-stimulated dephosphorylation. In the absence of K+, SCH 28080 has a higher apparent affinity for E2P, but it permits K(+)-independent dephosphorylation. Since the dissociation rate of SCH 28080 from the enzyme is slow, phosphoenzyme formation is prevented by SCH 28080 remaining bound to the extracytosolic conformation of the monovalent cation site, thereby reducing the steady-state level of phosphoenzyme.  相似文献   

12.
The Ca2+ + Mg2+-activated ATPase of sarcoplasmic reticulum exhibits complex kinetics of activation with respect to ATP. ATPase activity is pH-dependent, with similar pH-activity profiles at high and low concentrations of ATP. Low concentrations of Ca2+ in the micromolar range activate the ATPase, whereas activity is inhibited by Ca2+ at millimolar concentrations. The pH-dependence of this Ca2+ inhibition and the effect of the detergent C12E8 (dodecyl octaethylene glycol monoether) on Ca2+ inhibition are similar to those observed on activation by low concentrations of Ca2+. On the basis of these and other studies we present a kinetic model for the ATPase. The ATPase is postulated to exist in one of two conformations: a conformation (E1) of high affinity for Ca2+ and MgATP and a conformation (E2) of low affinity for Ca2+ and MgATP. Ca2+ binding to E2 and to the phosphorylated form E2P are equal. Proton binding at the Ca2+-binding sites in the E1 and E2 conformations explains the pH-dependence of Ca2+ effects. Binding of MgATP to the phosphorylated intermediate E1'PCa2 and to E2 modulate the rates of the transport step E1'PCa-E2'PCa2 and the return of the empty Ca2+ sites to the outside surface of the sarcoplasmic reticulum, as well as the rate of dephosphorylation of E2P. Only a single binding site for MgATP is postulated.  相似文献   

13.
The Kv2.1 potassium channel contains a lysine in the outer vestibule (position 356) that markedly reduces open channel sensitivity to changes in external [K(+)]. To investigate the mechanism underlying this effect, we examined the influence of this outer vestibule lysine on three measures of K(+) and Na(+) permeation. Permeability ratio measurements, measurements of the lowest [K(+)] required for interaction with the selectivity filter, and measurements of macroscopic K(+) and Na(+) conductance, were all consistent with the same conclusion: that the outer vestibule lysine in Kv2.1 interferes with the ability of K(+) to enter or exit the extracellular side of the selectivity filter. In contrast to its influence on K(+) permeation properties, Lys 356 appeared to be without effect on Na(+) permeation. This suggests that Lys 356 limited K(+) flux by interfering with a selective K(+) binding site. Combined with permeation studies, results from additional mutagenesis near the external entrance to the selectivity filter indicated that this site was located external to, and independent from, the selectivity filter. Protonation of a naturally occurring histidine in the same outer vestibule location in the Kv1.5 potassium channel produced similar effects on K(+) permeation properties. Together, these results indicate that a selective, functional K(+) binding site (e.g., local energy minimum) exists in the outer vestibule of voltage-gated K(+) channels. We suggest that this site is the location of K(+) hydration/dehydration postulated to exist based on the structural studies of KcsA. Finally, neutralization of position 356 enhanced outward K(+) current magnitude, but did not influence the ability of internal K(+) to enter the pore. These data indicate that in Kv2.1, exit of K(+) from the selectivity filter, rather than entry of internal K(+) into the channel, limits outward current magnitude. We discuss the implications of these findings in relation to the structural basis of channel conductance in different K(+) channels.  相似文献   

14.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

15.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

16.
Interaction of fluorescein isothiocyanate with the (H+ + K+)-ATPase   总被引:4,自引:0,他引:4  
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

17.
Digestion with proteinase K or trypsin yields complementary information on conformational transitions of the Ca(2+)-ATPase (SERCA) in the native membrane environment. Distinct digestion patterns are obtained with proteinase K, revealing interconversion of E1 and E2 or E1 approximately P and E2-P states. The pH dependence of digestion patterns shows that, in the presence of Mg(2+), conversion of E2 to E1 pattern occurs (even when Ca(2+) is absent) as H(+) dissociates from acidic residues. Mutational analysis demonstrates that the Glu(309) and Glu(771) acidic residues (empty Ca(2+)-binding sites I and II) are required for stabilization of E2. Glu(309) ionization is most important to yield E1. However, a further transition produced by Ca(2+) binding to E1 (i.e. E1.2Ca(2+)) is still needed for catalytic activation. Following ATP utilization, H(+)/Ca(2+) exchange is involved in the transition from the E1 approximately P.2Ca(2+) to the E2-P pattern, whereby alkaline pH will limit this conformational transition. Complementary experiments on digestion with trypsin exhibit high temperature dependence, indicating that, in the E1 and E2 ground states, the ATPase conformation undergoes strong fluctuations related to internal protein dynamics. The fluctuations are tightly constrained by ATP binding and phosphoenzyme formation, and this constraint must be overcome by thermal activation and substrate-free energy to allow enzyme turnover. In fact, a substantial portion of ATP free energy is utilized for conformational work related to the E1 approximately P.2Ca(2+) to E2-P transition, thereby disrupting high affinity binding and allowing luminal diffusion of Ca(2+). The E2 state and luminal path closure follow removal of conformational constraint by phosphate.  相似文献   

18.
W J Ball 《Biochemistry》1984,23(10):2275-2281
Several hybridoma cell lines secreting antibodies specific to the membrane (Na+,K+)-dependent ATPase from lamb kidney medulla have been isolated by using the methods developed by Kohler and Milstein. One of these antibodies (designated M7-PB- E9 ) has been shown to be directed against a functional epitope or antigenic site of the catalytic (alpha) subunit of the enzyme. Although this antibody was raised to the "native" holoenzyme, it has a higher apparent affinity toward the isolated, delipidated, and inactive alpha subunit than toward the holoenzyme. This antibody shows a 10-fold faster initial rate of binding to the alpha subunit than to the holoenzyme. The antibody dissociation rates from both isolated alpha subunit and holoenzyme are similarly slow, and the binding can be considered a pseudoirreversible reaction. By binding at this site, the antibody, however, acts like a "partial competitive inhibitor" with respect to ATP and acts as an uncompetitive or mixed competitive inhibitor with respect to the Na+ and K+ dependence of ATPase hydrolysis. This antibody also does not alter the cooperativity at either the Na+ or the K+ sites. The antibody causes a partial inhibition of the Na+- and MgATP-dependent phosphoenzyme intermediate formation but has no effect on either ADP in equilibrium ATP exchange or the K+-stimulated dephosphorylation step. In addition, the K+-dependent p-nitrophenylphosphatase activity of the enzyme was not affected. In the presence of Mg2+, the antibody stimulates the rate of cardiac glycoside binding [( 3H]ouabain) to the (Na+,K+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Melittin is a 26-amino acid amphipathic polypeptide toxin from bee venom which forms anion-selective ion channels in bilayers and biological membranes under the influence of membrane potential. Melittin has been shown to interact with a number of membrane proteins. We found that melittin inhibited K+-stimulated ATP hydrolysis by the (H+ + K+) ATPase in parietal cell apical membrane vesicles derived from histamine-stimulated rabbit gastric mucosa with a KIapp of 0.5 micron. Melittin also inhibited K+-stimulated p-nitrophenyl hydrolysis activity which is associated with the gastric (H+ + K+) ATPase in a dose-dependent manner with a KIapp of 0.95 micron. ATP-driven, K+-dependent H+ transport was inhibited over this same concentration range, even in the absence of a membrane potential. Melittin did not appear to increase the H+ leak from vesicle with preformed H+ gradients when the H+ pump was arrested by Mg2+ chelation, but all possible membrane perturbation effects were difficult to rule out. However, the data suggest that melittin exerts its inhibitory effect through interaction with the (H+ + K+) ATPase. In order to determine whether direct interactions between the (H+ + K+) ATPase and melittin occurred, a radioactive derivative of melittin, [125I]azidosalicylyl melittin, was prepared and photoreacted with sealed rabbit gastric membranes and highly purified hog gastric membrane containing the (H+ + K+) ATPase. In the purified hog preparation only a 95,000-Da band, the (H+ + K+) ATPase was labeled, while in the rabbit preparation a 95,000-Da band and one other membrane protein of 70,000 Da were labeled with this reagent. Label incorporation into the (H+ + K+) ATPase and the 70,000-Da band was greatly reduced by addition of excess unlabeled melittin, suggesting specificity of the interaction. Label incorporation occurred in the absence of ATP or added salts and was not reduced by SCH28080 (a K+ site inhibitor) suggesting that the melittin binding site was distinct from the luminal K+ site of action of SCH28080.  相似文献   

20.
Diethyl pyrocarbonate was used to modify histidyl residues on the sarcoplasmic reticulum ATPase. Difference spectra of the N-carbethoxyhistidyl derivative indicated that most all the histidyl residues on the enzyme had been modified. These residues could be divided into two populations on the basis of their reaction rate with the reagent. It could then be shown that enzyme inhibition followed modification of the slower reacting population. Reversal with hydroxylamine verified that the loss of activity was due specifically to histidyl modification. Using [32P]ATP as a substrate it was further determined that the modified ATPase could form a phosphoenzyme intermediate, but that the hydrolysis of this intermediate was inhibited. Size exclusion chromatography was used to obtain equilibrium binding curves for high affinity Ca2+ sites on the enzyme. With the normal ATPase a cooperative binding curve for two Ca2+ with a Hill coefficient of 1.8 was observed. With the modified ATPase binding to two independent sites was observed; however, the dissociation constants remained the same as in the cooperative mechanism (K1 = 14 microM; K2 = 0.5 microM). That is, modification had eliminated cooperativity without changing the site specific binding affinities. E-P formation was then shown to follow binding to the higher affinity of the two sites. This would be the second site to bind Ca2+ in a sequential, cooperative mechanism. A model is suggested in which the binding of Ca2+ to an initial site allows for the binding of a second Ca2+ to an occluded site, this second site being responsible for enzyme activation. Modification apparently allows the binding properties of both sites to be observed independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号