首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
5-Hydroxymethylcytosine (5-hmC) generated by ten-eleven translocation 1–3 (TET1–3) enzymes is an epigenetic mark present in many tissues with different degrees of abundance. IL-1β and TNF-α are the two major cytokines present in arthritic joints that modulate the expression of many genes associated with cartilage degradation in osteoarthritis. In the present study, we investigated the global 5-hmC content, the effects of IL-1β and TNF-α on 5-hmC content, and the expression and activity of TETs and isocitrate dehydrogenases in primary human chondrocytes. The global 5-hmC content was found to be ∼0.1% of the total genome. There was a significant decrease in the levels of 5-hmC and the TET enzyme activity upon treatment of chondrocytes with IL-1β alone or in combination with TNF-α. We observed a dramatic (10–20-fold) decrease in the levels of TET1 mRNA expression and a small increase (2–3-fold) in TET3 expression in chondrocytes stimulated with IL-1β and TNF-α. IL-1β and TNF-α significantly suppressed the activity and expression of IDHs, which correlated with the reduced α-ketoglutarate levels. Whole genome profiling showed an erasure effect of IL-1β and TNF-α, resulting in a significant decrease in hydroxymethylation in a myriad of genes including many genes that are important in chondrocyte physiology. Our data demonstrate that DNA hydroxymethylation is modulated by pro-inflammatory cytokines via suppression of the cytosine hydroxymethylation machinery. These data point to new mechanisms of epigenetic control of gene expression by pro-inflammatory cytokines in human chondrocytes.  相似文献   

2.
Renal tubular epithelial-myofibroblast transdifferentiation (EMT) plays a central role in the development of renal interstitial fibrosis (RIF). The profibrotic cytokine interleukin (IL)-1 and the IL-1 receptor (IL-1R) also participate in RIF development, and Toll/IL-1R 8 (TIR8), a member of the Toll-like receptor superfamily, has been identified as a negative regulator of IL-1R signaling. However, the functions of TIR8 in IL-1-induced RIF remain unknown. Here, human embryonic kidney epithelial cells (HKC) and unilateral ureteric obstruction (UUO)-induced RIF models on SD rats were used to investigate the functions of TIR8 involving IL-1β-induced EMT. We showed that IL-1β primarily triggers TIR8 expression by activating nuclear factor-κB (NF-κB) in HKC cells. Conversely, high levels of TIR8 in HKC cells repress IL-1β-induced NF-κB activation and inhibit IL-1β-induced EMT. Moreover, in vitro and in vivo findings revealed that TIR8 downregulation facilitated IL-1β-induced NF-κB activation and contributed to TGF-β1-mediated EMT in renal tubular epithelial cells. These results suggested that TIR8 exerts a protective role in IL-1β-mediated EMT and potentially represents a new target for RIF treatment.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00620-8.  相似文献   

3.
4.
5.

Background

Pro-inflammatory cytokines possess osteoclastogenic or anti-osteoclastogenic activities. They influence osteoclasts directly or via the receptor activator of nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) system. Recent evidence suggests that inflammation may play a role in osteoporosis (OP) and osteoarthritis (OA). We aimed therefore to determine whether there is a difference between both groups: first, in the expression of the osteoclastogenic and anti-osteoclastogenic cytokines, second, in correlation of these cytokines with bone mineral density (BMD) and levels of bone turnover markers (BTM) and third, in correlation between the expression of these cytokines and osteoclast specific genes and RANK/RANKL/OPG genes.

Methods

Human bone samples from 54 age and sex matched patients with OP or OA were collected during hip arthroplasty surgery. The expression of 25 genes encoding pro-inflammatory cytokines, their receptors, osteoclast specific genes and RANK/RANKL/OPG genes was measured using quantitative real-time PCR. Total hip, femoral neck and lumbar spine BMD and BTM in blood samples were measured. The comparison between OP and OA was assessed using Student''s t-test or Mann-Whitney U test and correlations between gene expression, BMD and BTM were determined using nonparametric correlation.

Results

The results demonstrated a higher expression of interleukin (IL)-6 and IL-1α in OP, and interferon (IFN)-γ in OA (p < 0.0005). Negative correlations of total hip BMD with tumor necrosis factor-α (TNF-α) in OA and with RANKL/RANK in OP were found (p < 0.05). Significant correlations with BTM were shown for IL-1α and IFN-γ in OP (rho = 0.608 and -0.634) and for TNF-α, IL-6 and transforming growth factor-β1 (TGF-β1) in OA (rho = 0.591, -0.521 and 0.636). Results showed OP specific negative correlations (IFN-γ with ITGB3, IFN-β1 with CTSK, tartrate resistant acid phosphatase (TRAP), CALCR, RANK, RANKL, IL-1α with CTSK, OPG, IL-17A with CALCR) and positive (TGF-β1 with CTSK, TRAP, RANK), and OA specific negative (IL-1α with osteoclast associated immunoglobulin-like receptor (OSCAR), TNF-α with RANK, RANKL, OPG) and positive (IL-6 with RANK, RANKL, OPG) correlations.

Conclusions

Our results demonstrate that the relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human OP and OA bone and could present an important factor for characteristics of OP and OA bone phenotypes.  相似文献   

6.
The β2 adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled β2-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients.The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that β-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-α (TNF-α)-induced NF-κB activity by reducing levels of both phosphorylated-IKK and -IκBα, thereby decreasing NF-κB nuclear translocation and the expression of MMP-9, an NF-κB target gene. Subsequently, we show that indacaterol significantly inhibits TNF-α/NF-κB-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-κB activity in a β-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.  相似文献   

7.
8.
BackgroundInflammation is recognized as a hallmark feature of cancer development and progression. The aim of our study was to investigate the significance of serum nuclear factor kappa-B (NF-κB) levels as a circulating marker in the monitoring of inflammation in breast and colon cancer; to show the relationship between NF-κB with inflammatory parameters as tumour necrosis factor-α (TNF-α), soluble TNF-related apoptosis-inducing ligand (sTRAIL), interleukin-6 (IL-6), pentraxin-3 (PTX-3), procalcitonin (PCT), and C-reactive protein (CRP) levels.MethodsSerum NF-κB, TNF-α, sTRAIL, IL-6, PTX-3, PCT, and serum CRP levels were measured using enzyme-linked immunosorbent assay (ELISA) in 40 patients with breast cancer, 40 patients with colon cancer and 30 healthy controls.ResultsThe serum NF-κB, TNF-α, IL-6, PTX-3, PCT, and serum CRP concentration was significantly higher, and the serum sTRAIL concentration was significantly lower in the patients with breast and colon cancer than in healthy controls. NF-κB was positively correlated with CRP and negatively correlated with sTRAIL.ConclusionsThese results suggest that increased NF-κB may decrease the clinical efficacy of sTRAIL in solid tumour cells. There is a relationship between inflammation and carcinogenesis so that the development of cancer occurs with chronic inflammation in breast and colon. The study results have shown that colon and breast cancer patients have increased systemic inflammation, as measured by increased circulating cytokines, and acute-phase proteins, or by abnormalities in circulating cells. NF-κB may combine with other markers of the systemic inflammatory response in prognostic scores in cancer. In addition to surgical resection of the tumour, and conventional radio and chemotherapy for cancer treatment, the use of sTRAIL or other agonists for cancer therapy appeared a new potential therapy.  相似文献   

9.
10.
11.
Descargues P  Sil AK  Karin M 《The EMBO journal》2008,27(20):2639-2647
IκB kinase α (IKKα), one of the two catalytic subunits of the IKK complex involved in nuclear factor κB (NF-κB) activation, also functions as a molecular switch that controls epidermal differentiation. This unexpected function requires IKKα nuclear translocation but does not depend on its kinase activity, and is independent of NF-κB signalling. Ikkα–/– mice present with a hyperproliferative and undifferentiated epidermis characterized by complete absence of a granular layer and stratum corneum. Ikkα-deficient keratinocytes do not express terminal differentiation markers and continue to proliferate even when subjected to differentiation-inducing stimuli. This antiproliferative function of IKKα is also important for the suppression of squamous cell carcinogenesis. The exact mechanisms by which nuclear IKKα controls keratinocyte proliferation and differentiation remained mysterious for some time. Recent studies, however, have revealed that IKKα is a major cofactor in a TGFβ–Smad2/3 signalling pathway that is Smad4 independent. This pathway controls cell cycle withdrawal during keratinocyte terminal differentiation. Although these are not the only functions of nuclear IKKα, this multifunctional protein is a key regulator of keratinocyte and epidermal differentiation and a critical suppressor of skin cancer.  相似文献   

12.
13.
14.
15.
Purpose: Our previous data indicated that miR-24-3p is involved in the regulation of vascular endothelial cell (EC) proliferation and migration/invasion. However, whether IL-1β affects hypoxic HUVECs by miR-24-3p is still unclear. Therefore, the present study aimed to investigate the role and underlying mechanism of interleukin 1β (IL-1β) in hypoxic HUVECs.Methods: We assessed the mRNA expression levels of miR-24-3p, hypoxia-inducible factor-1α (HIF1A) and NF-κB-activating protein (NKAP) by quantitative real-time polymerase chain reaction (RT-qPCR). ELISA measured the expression level of IL-1β. Cell counting kit-8 (CCK-8) assays evaluated the effect of miR-24-3p or si-NKAP+miR-24 on cell proliferation (with or without IL-1β). Transwell migration and invasion assays were used to examine the effects of miR-24-3p or si-NKAP+miR-24-3p on cell migration and invasion (with or without IL-1β). Luciferase reporter assays were used to identify the target of miR-24-3p.Results: We demonstrated that in acute myocardial infarction (AMI) patient blood samples, the expression of miR-24-3p is down-regulated, the expression of IL-1β or NKAP is up-regulated, and IL-1β or NKAP is negatively correlated with miR-24-3p. Furthermore, IL-1β promotes hypoxic HUVECs proliferation by down-regulating miR-24-3p. In addition, IL-1β also significantly promotes the migration and invasion of hypoxic HUVECs; overexpression of miR-24-3p can partially rescue hypoxic HUVECs migration and invasion. Furthermore, we discovered that NKAP is a novel target of miR-24-3p in hypoxic HUVECs. Moreover, both the overexpression of miR-24-3p and the suppression of NKAP can inhibit the NF-κB/pro-IL-1β signaling pathway. However, IL-1β mediates suppression of miR-24-3p activity, leading to activation of the NKAP/NF-κB pathway. In conclusion, our results reveal a new function of IL-1β in suppressing miR-24-3p up-regulation of the NKAP/NF-κB pathway.  相似文献   

16.
Although tumor necrosis factor-α (TNF-α) is a known major inflammatory mediator in inflammatory bowel disease (IBD) and has various effects on intestinal epithelial cell (IEC) homeostasis, the changes in IECs in the early inflammatory state induced during short-time treatment (24 h) with TNF-α remain unclear. In this study, we investigated TNF-α-induced alterations in IECs in the early inflammatory state using mouse jejunal organoids (enteroids). Of the inflammatory cytokines, i.e., TNF-α, IL-1β, IL-6, and IL-17, only TNF-α markedly increased the mRNA level of macrophage inflammatory protein 2 (MIP-2; the mouse homologue of interleukin-8), which is induced in the early stages of inflammation. TNF-α stimulation (3 h and 6 h) decreased the mRNA level of the stem cell markers leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) and polycomb group ring finger 4 and the progenitor cell marker prominin-1, which is also known as CD133. In addition, TNF-α treatment (24 h) decreased the number of Lgr5-positive cells and enteroid proliferation. TNF-α stimulation at 3 h and 6 h also decreased the mRNA level of chromogranin A and mucin 2, which are respective markers of enteroendocrine and goblet cells. Moreover, enteroids treated with TNF-α (24 h) not only decreased the integrity of tight junctions and cytoskeletal components but also increased intercellular permeability in an influx test with fluorescent dextran, indicating disrupted intestinal barrier function. Taken together, our findings indicate that short-time treatment with TNF-α promotes the inflammatory response and decreases intestinal stem cell activity and barrier function.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10616-021-00487-y.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号