首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Chondroitin sulphate synthesis on proteoglycans was decreased in rat chondrosarcoma cell cultures in the presence of cycloheximide (0.1-1.0 muM) or p-nitrophenyl beta-D-xyloside (50 microM). In the presence of cycloheximide the proteoglycan monomer was of larger size, the chondroitin sulphate chains were increased in length, but a similar number of chains was attached to each proteoglycan and the size of the core protein was unaltered. In the presence of p-nitrophenyl beta-D-xyloside (50 microM), chondroitin sulphate synthesis was increased (by 60-80%), but the incorporation into proteoglycans was decreased (by 70%). The chondroitin sulphate chains were of shorter length than in control cultured and the number of chains attached to each proteoglycan was decreased. In cultures with cycloheximide or actinomycin D the synthesis of chondroitin sulphate was less inhibited on beta-xyloside than on endogenous proteoglycan. When the rate of chondroitin sulphate synthesis was decreased by lowering the temperature of cultures, the chains synthesized at 22 and 4 degrees C were much longer than at 37 degrees C, but in the presence of p-nitrophenyl beta-D-xyloside the chains were of the same length at all three temperatures. A model of chain elongation is thus proposed in which the rate of chain synthesis is determined by the concentration of xylosyl acceptor and the length of the chains is determined by the ratio of elongation activity to xylosyl-acceptor concentration.  相似文献   

2.
Addition of actinomycin D (or cordycepin, an alternative inhibitor of RNA synthesis) to cartilage cultures resulted in a first-order decrease in the rate of incorporation of [35S]sulphate into proteoglycan (half-life = 7.5 +/- 1.1 h). Addition of 1.0 mM-benzyl beta-D-xyloside relieved the initial inhibition of glycosaminoglycan synthesis induced by actinomycin D; however, after a lag of about 10 h the rate of xyloside-initiated glycosaminoglycan synthesis also decreased with apparent first-order kinetics (half-life = 7.1 +/- 1.8 h), which paralleled the decrease in the rate of core-protein-initiated glycosaminoglycan synthesis. The hydrodynamic size of the proteoglycans formed in the presence of actinomycin D remained essentially constant (Kav. 0.21-0.23), whereas the constituent glycosaminoglycan chains were larger than those formed by control cultures, which suggested that the core protein was substituted with fewer but larger glycosaminoglycan chains. Proteoglycans formed in the presence of beta-D-xyloside were significantly smaller (Kav. approximately 0.33) than those synthesized by control cultures, and were further diminished in size after exposure of cultures to actinomycin D. Glycosaminoglycan chains synthesized by these same cultures on to both core-protein and xyloside acceptors were also smaller than those of control cultures. The decrease in synthesis observed after exposure to actinomycin D was not reflected by any significant decrease in the activities of several glycosyltransferases involved in chondroitin sulphate synthesis (galactosyltransferase-I, galactosyltransferase-II, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II).  相似文献   

3.
Inhibition of protein synthesis by cycloheximide 10(-3)M reduced the incorporation of [35S]sulphate into heparan sulphate to about 5% of untreated hepatocytes. Addition of rho-nitrophenyl beta-D-xyloside could partially revert this inhibitory effect. The sulphated material isolated from the cell layer or secretions of hepatocytes grown in presence of cycloheximide and rho-nitrophenyl beta-D-xyloside were shown to be mostly free heparan sulphate chains not bound to core protein. Covalent association of beta-xylosides to the heparan sulphates was demonstrated for heparan sulphate synthetized in the presence of [35S]sulphate, cycloheximide and the fluorogenic 4-methylumbelliferyl beta-D-xyloside. Beta-Xylosides served as an initiator of heparan sulphate chain synthesis in rat hepatocytes only in the absence of protein synthesis. Heparan sulphates primed on artificial beta-xylosides are slightly smaller in molecular size and are more sulphated than chains linked to core protein.  相似文献   

4.
Proteoglycans synthesized by rat chondrosarcoma cells in culture are secreted into the culture medium through a pericellular matrix. The appearance of [35S]sulphate in secreted proteoglycan after a 5 min pulse was rapid (half-time, t 1/2 less than 10 min), but that of [3H]serine into proteoglycan measured after a 15 min pulse was much slower (t 1/2 120 min). The incorporation of [3H]serine into secreted protein was immediately inhibited by 1 mM-cycloheximide, but the incorporation of [35S]sulphate into proteoglycans was only inhibited gradually(t 1/2 79 min), suggesting the presence of a large intracellular pool of proteoglycan that did not carry sulphated glycosaminoglycans. Cultures were pulsed with [3H]serine and [35S]sulphate and chased for up to 6 h in the presence of 1 mM-cycloheximide. Analysis showed that cycloheximide-chased cells secreted less than 50% of the [3H]serine in proteoglycan of control cultures and the rate of incorporation into secreted proteoglycan was decreased (from t 1/2 120 min to t 1/2 80 min). Under these conditions cycloheximide interfered with the flow of proteoglycan protein core along the route of intracellular synthesis leading to secretion, as well as inhibiting further protein core synthesis. The results suggested that the newly synthesized protein core of proteoglycan passes through an intracellular pool for about 70-90 min before the chondroitin sulphate chains are synthesized on it, and it is then rapidly secreted from the cell. Proteoglycan produced by cultures incubated in the presence of cycloheximide and labelled with [35S]sulphate showed an increase with time of both the average proteoglycan size and the length of the constituent chondroitin sulphate chain. However, the proportion of synthesized proteoglycans able to form stable aggregates did not alter.  相似文献   

5.
Proteoglycan synthesis by cultured chondrocytes from the Swarm rat chondrosarcoma was examined after treatment with 0.1 mg/ml of cycloheximide which inhibited [3H]serine incorporation into total protein by greater than 90%. Incorporation of [35S]sulfate into proteoglycans decreased with nearly first order kinetics (t 1/2 = 96 +/- 6 min) with an accompanying increase in the size of the proteoglycan molecules, primary due to an increase in chondroitin sulfate chain sizes. After 5 h of cycloheximide treatment, when [35S]sulfate incorporation was inhibited by about 90%, addition of 1 mM beta-D-xyloside restored 76% of the incorporation into chondroitin sulfate observed in cultures treated only with xyloside. This suggests that the biochemical pathways for the affected by cycloheximide treatment. Cultures were prelabeled for 15 min with either [3H]serine or [35S]-methionine, and then cycloheximide was added to block further protein synthesis. Both precursors appeared in completed proteoglycan molecules with nearly first order kinetics with t 1/2 values of 92 +/- 8 and 101 +/- 11 min for [3H]serine and [35S]methionine, respectively, values in close agreement with the t 1/2 from the [35S]sulfate data. These results suggest that after cycloheximide treatment, the rate of [35S]sulfate incorporation into proteoglycan, after a correction for increases in chondroitin sulfate chain size, was directly proportional to the size of the intracellular pool of core protein. From the steady state rate of proteoglycan synthesis (estimated to be about 80 ng/min/10(6) cells in separate experiments) and a corrected t 1/2 value of 60 min, the amount of precursor core protein can be calculated to be about 500 ng/10(6) cells in these experiments.  相似文献   

6.
Heparin biosynthesis has been investigated with mouse mastocytoma in vitro. Minced tumour tissue catalysed the incorporation of [35S]sulphate and [3H]glucosamine into heparin and to a smaller extent into chondroitin sulphate. Addition of cycloheximide caused an inhibition (greater than 80%) of incorporation of each labelled precursor into both polysaccharides. Addition of benzyl beta-D-xyloside relieved the inhibition of incorporation into chondroitin sulphate and restored it to more than threefold that of the control incubation. The effect of beta-D-xyloside on incorporation into heparin was less marked although a consistent small increase of incorporation into this polysaccharide was observed. beta-D-Xyloside did, however, cause a marked incorporation of 35S and 3H labels into material of low molecular weight, which appeared to comprise heparin-like fragments. It is proposed that these fragments arise through a breakdown of the usual process of heparin biosynthesis.  相似文献   

7.
Incorporation of [35S]]sulphate, [3H]glucose and [3H]serine into glycosaminoglycans and proteoglycans of embryonic-chicken sternum was measured in vitro in incubation medium containing 4-methylumbelliferyl beta-D-xyloside or p-nitrophenyl beta-D-xyloside at low concentrations, and in the absence of inhibitors of protein synthesis. Incorporation of sulphate was decreased by 80% in incubations in which 1mM-4-methylumbelliferyl beta-xyloside or 2.5 mM-p-nitrophenyl beta-xyloside was present; under these conditions, serum factors stimulated incorporation to only a small extent. When the concentration of the xyloside was decreased tenfold, incorporation of sulphate was inhibited by 60-70%, but when normal human serum or L-3,3',5-tri-iodothyronine or both were also added to the incubation medium, incorporation was markedly stimulated. Experiments in which [35S]sulphate and [3H]glucose were incorporated simultaneously, and enzymic analysis of glycosaminoglycans formed in such experiments, indicated that chondroitin sulphate formed in the presence of 0.1 mM-4-methylumbelliferyl beta-xyloside contained 30-40% less sulphate than did chondrotin sulphate synthesized in the absence of xylosides. Similar experiments, with [3H]serine instead of [3H]glucose, suggested also a 20-30% decrease in chain length of the chondroitin sulphate; this was confirmed by direct gel filtration of labelled glycosaminoglycans on a calibrated column. Incorporation of [3H]glucose or [3H]serine was stimulated by serum and tri-iodothyronine in parallel with incorporation of sulphate. The changes seen in the total chondroitin sulphate were mirrored in the major proteoglycan fraction, purified by isopycnic centrifugation of salt-extracted proteoglycans. The labelling pattern of chondroitin sulphate from this proteoglycan indicated that decreased sulphation of chondroitin sulphate was largely due to the inferior ability of short polysaccharide chains to accept sulphate, with some direct interference with transfer of sulphate to all chains. The results also suggested that the action of serum factors on synthesis of proteochondroitin sulphate is exercised at the level of either protein synthesis or transport to the sites of initiation of polysaccharide synthesis.  相似文献   

8.
Cartilage from adult bovine hock joints was incubated with [3H]galactose or [35S]sulphate in the presence of benzyl beta-D-xyloside. Radioisotope incorporation into proteoglycan was inhibited by the xyloside; the magnitude of this inhibition depended on the concentration of xyloside used. With 0.2mM xyloside radioisotope incorporation into keratan sulphate was not altered but inhibition was observed at xyloside concentrations of 1.0mM or higher. The decrease in radioisotope incorporation into keratan sulphate in the presence of 1.0mM benzyl beta-xyloside was directly related to a reduction in the average length of the keratan sulphate chains. This effect of beta-xyloside on keratan sulphate biosynthesis was markedly different from its effect on chondroitin sulphate biosynthesis.  相似文献   

9.
Cyclofenil diphenol, a weak non-steroidal oestrogen, binds to albumin. In the presence of concentrations of albumin just sufficient to keep cyclofenil diphenol in solution, the compound inhibited the synthesis of [35S]proteoglycans, [3H]glycoproteins, [3H]hyaluronate and [3H]proteins in primary cultures of chondrocytes from the Swarm rat chondrosarcoma in a dose-dependent manner. When excess albumin was present, conditions were found (90 micrograms of cyclofenil diphenol and 4 mg of albumin per ml of culture medium) which completely inhibited [35S]proteoglycan and [3H]hyaluronate synthesis but had little effect on [3H]protein or [3H]glycoprotein synthesis. The time of onset of inhibition of [35S]proteoglycan synthesis by cyclofenil diphenol was very rapid (t1/2 less than 25 min) and incompatible with an action mediated through suppression of proteoglycan core protein synthesis. Cyclofenil diphenol inhibited the synthesis of [35S]chondroitin sulphate chains onto p-nitrophenyl beta-D-xyloside in the cultures. Cyclofenil diphenol had little effect on the secretion from chondrocytes of [35S]proteoglycans synthesized immediately prior to treatment. Chondrocyte cultures treated with cyclofenil diphenol recovered their biosynthetic activities almost completely within 3 h of removing the compound from the culture medium. Cyclofenil diphenol had a similar inhibitory action on the synthesis of [35S]proteoglycans in secondary cultures of human dermal fibroblasts from both normal subjects and patients with systemic sclerosis. It is proposed that cyclofenil diphenol inhibits the synthesis of [35S]proteoglycans by interfering with the formation of the glycosaminoglycan side chains of these molecules in the Golgi apparatus of cells. The action may be due to disturbance of Golgi membrane organization by the compound.  相似文献   

10.
11.
When slices of adult rabbit articular cartilage were incubated in culture medium, the rate of incorporation of [35S]sulphate or [3H]acetate into glycosaminoglycans increased 4-8 fold during the first 5 days of incubation. Similar changes in biosynthetic activity were observed during culture of adult bovine cartilage. The activation of synthesis was not serum-dependent, but appeared to be a result of the depletion of tissue proteoglycan that occurs under these incubation conditions [Sandy, Brown & Lowther (1978) Biochim. Biophys. Acta 543, 536--544]. Thus, although complete activation was observed in serum-free medium, it was not observed if the cartilage was cultured inside dialysis tubing or in medium containing added proteoglycan subunit. The average molecular size of the proteoglycans synthesized by activated tissue was slightly larger than normal, as determined by chromatography on Sepharose CL-2B, and the average molecular size of the glycosaminoglycans synthesized by activated tissue was markedly increased over the normal. The increase in chain size was accompanied by an increase in the proportion of the chains degraded by chondroitinase ABC; these results are consistent with the preferential synthesis by activated chondrocytes of chondroitin sulphate-rich proteoglycans. The increase in glycosaminoglycan chain size was observed whether the chains were formed on endogenous core protein or on exogenous benzyl-beta-D-zyloside. An approximate 4-fold activation in culture of glycosaminoglycan synthesis on protein core was accompanied by a 1.54-fold increase in the rate of incorporation of [3H]serine into the chondroitin sulphate-linkage region of the proteoglycans. A 2.8-fold activation in culture of glycosaminoglycan synthesis on benzyl-beta-D-zyloside was accompanied by a 1.7-fold increase in the rate of incorporation of [3H]benzyl-beta-D-zyloside into glycosaminoglycans. The activation of glycosaminoglycan synthesis was, however, accompanied by no detectable change in the activity of xylosyltransferase (EC 2.4.2.26) in cell-free extracts. These results are discussed in relation to current ideas on the control of proteoglycan synthesis in cartilage.  相似文献   

12.
Since administration of 6-aminonicotinamide (10 micrograms) to day-4 chick embryos in ovo was shown to induce micromelial limbs, biosynthesis of cartilage-characteristic proteoglycan-H (PG-H) as an important index of limb chondrogenesis was examined in day-7 normal and micromelial hind limbs by biochemical and immunological methods. (1) Metabolic labelling of the micromelial limbs with [6-3H]glucosamine and either [35S]sulphate or [35S]methionine, followed by analyses of labelled PG-H by glycerol density-gradient centrifugation under dissociative conditions, showed a marked reduction in the PG-H synthesis. (2) PG-H synthesized by the micromelial limbs was much lower than that synthesized by the normal limbs in the biosynthetic ratio of chondroitin sulphate to keratan sulphate and glycoprotein-type oligosaccharide, although no significant difference was observed in the immunological properties of these proteoglycans. (3) The degree of sulphation of chondroitin sulphates of PG-H was lowered in the micromelial limbs as judged by the increase of unsulphated disaccharide (delta Di-OS) released by chrondroitinase ABC digestion, although there were no significant differences between the normal and the micromelial limbs in the average molecular size (Mr = 38,000) of labelled chondroitin sulphates of PG-H. (4) Addition of beta-D-xyloside, an artificial initiator for chondroitin sulphate synthesis, to the micromelial limbs in culture recovered the incorporation of labelled glucosamine into chondroitin sulphate to that comparable with the normal control with beta-D-xyloside, although the incorporation of [35S]sulphate was lower in the micromelia than in the control with beta-D-xyloside. These results suggest that the reduction in the biosynthesis of the PG-H as well as the production of altered forms of PG-H induced by 6-aminonicotinamide during a critical period of limb morphogenesis may be an important factor for the micromelia.  相似文献   

13.
Cultured human melanoma M21 cells were treated with diethylcarbamazine (DEC), an inhibitor of proteoglycan biosynthesis in rat chondrosarcoma cells, to examine the assembly and transport of a chondroitin sulfate proteoglycan to the plasma membrane. Pretreatment of melanoma cells at 37 degrees C for 15 min with increasing doses of DEC followed by a 60-min pulse with [35S]sulfate in the presence of DEC resulted in a dose-related inhibition of incorporation of [35S]sulfate into macromolecules. In cells incubated for 75 min with both 1 mM beta-D-xyloside and 15 mM DEC, synthesis and secretion of beta-D-xyloside-bound 35S-glycosaminoglycans were inhibited by more than 80% as compared to cells treated with beta-D-xyloside alone; this inhibition was reversible. As assessed by [3H]serine incorporation into protein, overall protein synthesis was not substantially inhibited by DEC treatment. Detergent lysates from [35S]methionine-labeled melanoma cells were incubated with a monoclonal antibody (9.2.27) that specifically recognizes the peptide core of the melanoma proteoglycan. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the immunoprecipitate, a 240,000 Mr endoglycosidase H (Endo-H)-sensitive intermediate was the only form of the proteoglycan present inside the cells when the cultures were treated for 60-120 min with 10-15 mM DEC. When the melanoma cells were incubated for 10 min with 15 mM DEC and 100 mu Ci/ml of [35S]methionine, washed, and then chased for 15 min to 4 h in radioactive-free medium, the 240,000 Mr Endo-H-sensitive intermediate was slowly converted to a 250,000 Endo-H-resistant intermediate but not to a mature proteoglycan molecule that possessed chondroitin sulfate glycosaminoglycans. SDS-PAGE analysis of cell surface immunoprecipitates revealed that only a small amount of the 250,000 Mr intermediate was transported to the plasma membrane within 5 h of incubation in the presence of DEC. Proteoglycan synthesis was also inhibited when the melanoma cells were incubated for 60-120 min with ammonium chloride, but unlike DEC-treated cells the majority of the synthesized peptide core was converted to a 245,000 Mr Endo-H-resistant intermediate that was detected on the cell surface. Light and electron microscopic analysis of DEC-treated melanoma cells revealed large vacuoles and a distended Golgi and endoplasmic reticulum. Ammonium chloride-treated cells contained fewer vacuoles than DEC-treated cells but more vacuoles than normal cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Maintenance of fibroblasts in 0.5% serum results in viable but non-proliferative cells that may be analogous to fibroblasts in vivo. The synthesis of proteoglycans by human embryo lung fibroblasts in Eagle's minimal essential medium with 0.5% newborn-bovine serum or with 10% serum has been compared. A similar amount of [35S]sulphate-labelled glycosaminoglycan per cell was secreted by fibroblasts in 10% or 0.5% serum. 35SO42-incorporation into sulphated glycosaminoglycans was enhanced in 0.5% serum when expressed per mg of cell protein, but [3H]glucosamine incorporation was decreased. The charge density of these glycosaminoglycans was not changed as determined by ion-exchange chromatography. It was concluded that decreased protein/ cell resulted in an apparent increase in 35S-labelled glycosaminoglycan synthesis/mg of cell protein, whereas decreased uptake of [3H]glucosamine resulted in a decrease in their glucosamine labelling. The proteoglycans secreted by fibroblasts in 0.5% serum were similar in glycosaminoglycan composition, chain length and buoyant density to the dermatan sulphate proteoglycan, which is the major secreted component of cells in 10% serum. Larger heparan sulphate and chondroitin sulphate proteoglycans, which comprise about 40% of the total secreted proteoglycans of cultures in 10% serum, were greatly diminished in the medium of cultures in 0.5% serum. The proteoglycan profile of medium from density-inhibited cultures in 10% serum resembles that of proliferating cultures, indicating that lack of proliferation was not responsible for the alteration. The dermatan sulphate proteoglycan, participating in extracellular matrix structure, may be the primary tissue product of lung fibroblasts in vivo.  相似文献   

15.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

16.
Human melanoma cells synthesize a cell-associated chondroitin sulfate-rich proteoglycan, whose core protein is recognized by monoclonal antibody 9.2.27. We report that the core protein is present on the surface of melanoma cells in two forms, either free or modified by the addition of chondroitin sulfate chains, suggesting that the addition of glycosaminoglycan chains may not be a prerequisite for cell surface expression of the proteoglycan core protein. Free core protein found at the cell surface does not seem to represent an overflow of the proteoglycan synthetic pathway, since experiments using a beta-D-xyloside acceptor suggest that core protein is, in fact, limiting proteoglycan synthesis. NH4Cl inhibits the synthesis of melanoma-type proteoglycan, shifting the balance of surface core protein toward the free form. The inhibition of proteoglycan synthesis is apparently not due to a disruption of enzymes and precursors involved in glycosaminoglycan synthesis, since cells treated with NH4Cl retain their ability to initiate and elongate chondroitin 4-sulfate chains on a beta-D-xyloside acceptor. In contrast, the divalent ionophore monensin inhibited core protein maturation and synthesis of glycosaminoglycan chains. The effects of both NH4Cl and monensin were reversible; thus, experiments using the drugs sequentially indicated that monensin temporally precedes NH4Cl in interfering with proteoglycan biosynthesis. Since the NH4Cl and monensin share the property of inhibiting the acidification of intracellular vesicles within cells, the present findings raise the possibility that the accessibility of proteoglycan core protein to the Golgi site of glycosaminoglycan addition is regulated in melanoma cells by acidification of intracellular compartments.  相似文献   

17.
Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan-35SO4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin-35SO4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan-35SO4 GAGs were taken up by kidneys more avidly than was free [35S]sulfate. These 35S-GAGs were degraded and reutilized in the synthesis of chondroitin-35SO4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis.  相似文献   

18.
Our previous work showed that vitamin C deficiency caused about a 70-80% decrease in the incorporation of [35S]sulfate into proteoglycan of guinea pig costal cartilage, coordinately with a decrease in collagen synthesis (Bird, T. A., Spanheimer, R. G., and Peterkofsky, B. (1986) Arch. Biochem. Biophys. 246, 42-51). We examined the mechanism for decreased proteoglycan synthesis by labeling normal and scorbutic cartilage in vitro with radioactive precursors. Proteoglycan monomers from scorbutic tissue were of a slightly smaller average hydrodynamic size than normal but there was no difference in the size of the glycosaminoglycan chains isolated after papain digestion. The type of glycosaminoglycans synthesized and the degree of sulfation were unaffected as determined by chondroitinase ABC digestion and duel labeling with [35S]sulfate and [3H]glucosamine. Conversion of [3H]glucosamine to [3H]galactosamine also was unimpaired. There was about a 40% decrease in core protein synthesis, measured by [14C]serine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nevertheless, decreased incorporation of [35S]sulfate into scorbutic tissue persisted in the presence of p-nitrophenyl-beta-D-xyloside and cycloheximide, which indicated that the site of the scorbutic defect was beyond core protein synthesis and xylosylation. Galactosyltransferase activity in scorbutic cartilage decreased to about one-third the levels in control samples in parallel with the decreases in proteoglycan and collagen synthesis. Our results suggest that the step catalyzed by this enzyme activity, the addition of galactose to xylose prior to chondroitin sulfate chain elongation, is the major site of the scorbutic defect in proteoglycan synthesis. Decreased enzyme activity may be related to increased cortisol levels in scorbutic serum.  相似文献   

19.
Human embryonic skin fibroblasts were pretreated with transforming growth factor-beta (TGF-beta) for 6 h and then labeled with [35S]sulphate and [3H]leucine for 24 h. Radiolabeled proteoglycans from the culture medium and the cell layer were isolated and separated by isopycnic density-gradient centrifugation, followed by gel, ion-exchange and hydrophobic-interaction chromatography. The major proteoglycan species were examined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate before and after enzymatic degradation of the polysaccharide chains. The results showed that TGF-beta increased the production of several different 35S-labelled proteoglycans. A large chondroitin/dermatan sulphate proteoglycan (with core proteins of approximately 400-500 kDa) increased 5-7-fold and a small dermatan sulphate proteoglycan (PG-S1, also termed biglycan, with a core protein of 43 kDa) increased 3-4-fold both in the medium and in the cell layer. Only a small effect was observed on another dermatan sulphate proteoglycan, PG-S2 (also named decorin). These observations are generally in agreement with results of other studies using similar cell types. In addition, we have found that the major heparan sulphate proteoglycan of the cell layer (protein core approximately 350 kDa) was increased by TGF-beta treatment, whereas all the other smaller heparan sulphate proteoglycans with protein cores from 250 kDa to 30 kDa appeared unaffected. To investigate whether TGF-beta also influences the glycosaminoglycan (GAG) chain-synthesizing machinery, we also characterized GAGs derived from proteoglycans synthesized by TGF-beta-treated cells. There was generally no increase in the size of the GAG chains. However, the dermatan sulphate chains on biglycan and decorin from TGF-beta treated cultures contained a larger proportion of D-glucuronosyl residues than those derived from untreated cultures. No effect was noted on the 4- and 6-sulphation of the GAG chains. By the use of p-nitrophenyl beta-D-xyloside (an initiator of GAG synthesis) it could be demonstrated that chain synthesis was also enhanced in TGF-beta-treated cells (approximately twofold). Furthermore, the dermatan sulphate chains synthesized on the xyloside in TGF-beta-treated fibroblasts contained a larger proportion of D-glucuronosyl residues than those of the control. These novel findings indicate that TGF-beta affects proteoglycan synthesis both quantitatively and qualitatively and that it can also change the copolymeric structure of the GAG by affecting the GAG-synthesizing machinery. Altered proteoglycan structure and production may have profound effects on the properties of extracellular matrices, which can affect cell growth and migration as well as organisation of matrix fibres.  相似文献   

20.
The effect of porcine endothelial-cell-conditioned medium on proteoglycan synthesis by pig aorta smooth muscle cells was studied under serum-free conditions. Maximal stimulation of [35S]-sulfate incorporation (50%) into medium-secreted and cell layer proteoglycans was observed after 20 min and 4 h incubation, respectively. This stimulation can be explained neither by increased secretion nor by oversulfation of medium-secreted [35S]-labeled proteoglycans. Those [35S]-proteoglycans secreted (for 24 h) in the presence of endothelial cell-conditioned medium were characterized by a higher hydrodynamic size than those secreted in the presence of control medium, without modification of glycosaminoglycan chain length. Agreement between the stimulation of incorporation of [35S]-sulfate into glycanic chains (50.1%) and [14C]-serine residues associated with glycosaminoglycans (49.9%) involved an increase in the number of glycanic chains linked to protein cores. The lesser stimulation of [14C]-serine incorporation into secreted proteins (18%) suggested that stimulation of glycosaminoglycan synthesis was not the direct consequence of enhanced protein synthesis. Proteoglycan synthesis was studied in the presence of para-nitrophenyl-beta-D-xyloside. Fractionation of medium-secreted [35S]-proteoglycans and xyloside-initiated glycosaminoglycans revealed that stimulation of [35S]-glycosaminoglycan protein core acceptor for glycanic chain initiation. Our results suggest that the factor(s) secreted by endothelial cells are able to modify smooth muscle cell proteoglycan synthesis by stimulating the first step of protein core glycosylation. This stimulation was accompanied by an increase in proteoglycan hydrodynamic size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号