首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
For nearly 30 years, ecologists have argued that predators of seeds and seedlings seldom have population-level effects on plants with persistent seed banks and density-dependent seedling survival. We parameterized stage-based population models that incorporated density dependence and seed dormancy with data from a 5.5-year experiment that quantified how granivorous mice and herbivorous voles influence bush lupine (Lupinus arboreus) demography. We asked how seed dormancy and density-dependent seedling survival mediate the impacts of these consumers in dune and grassland habitats. In dune habitat, mice reduced analytical lambda (the intrinsic rate of population growth) by 39%, the equilibrium number of aboveground plants by 90%, and the seed bank by 98%; voles had minimal effects. In adjacent grasslands, mice had minimal effects, but seedling herbivory by voles reduced analytical lambda by 15% and reduced both the equilibrium number of aboveground plants and dormant seeds by 63%. A bootstrap analysis demonstrated that these consumer effects were robust to parameter uncertainty. Our results demonstrate that the quantitative strengths of seed dormancy and density-dependent seedling survival--not their mere existence--critically mediate consumer effects. This study suggests that plant population dynamics and distribution may be more strongly influenced by consumers of seeds and seedlings than is currently recognized.  相似文献   

2.
Herbivores are pervasive, yet their effects on plant fecundity are often variable. One potential source of variation in herbivore impacts results from differing feeding modes of herbivores. We examined the relative importance of inflorescence-feeding insects versus large ungulates in affecting the fecundity of Balsamorhiza sagittata (Asteraceae), a dominant native perennial forb in western Montana, USA. We quantified these effects across four sites that varied in elevation to determine how consistent herbivore impacts were across these divergent sites. Insect herbivores were present in flower heads at all sites but they significantly depressed plant fecundity at two of the four sites. At the two sites where herbivore suppression had significant effects, this treatment let to 1.6 and 3.4-fold increases in seed production, respectively. In contrast, across all sites ungulates had minimal impacts on balsamroot flower and seed production. Seed addition experiments revealed that at some sites and in some years B. sagittata is seed-limited, as there was a positive relationship between seed input and seedling recruitment. Thus, reductions in seed production from heavy insect herbivory may limit balsamroot recruitment in some locations. Overall, results show that inconspicuous insects have stronger effects on balsamroot fecundity than do mammalian herbivores, but the magnitude of negative impacts at both the individual and population-level vary by site.  相似文献   

3.
Despite the well‐documented impacts of consumers on seed abundance the link between seed predation and plant population dynamics remains poorly understood because experimental studies linking patterns of predation with seedling establishment are rare. We used experimental manipulations with six woody plant species to elucidate the effects of seed predator type, habitat, and plant species identity on rates of seed predation and seedling recruitment in the Neotropical savannas known as the Cerrado. We found that seed predation rates are consistently high across a diversity of local habitat types, with important inter‐habitat variation in seed predation for three of the six species used in our experiments. We also found that seed predation has a clear demographic signal – experimentally excluding predators resulted in higher rates of seedling establishment over the course of two seasons. Because the intensity of seed predation varied between species and habitats, it may play a role in structuring local patterns of plant abundance and community composition. Finally, our results lend support to the recent hypothesis that herbivores have major and underappreciated impacts in Neotropical savannas, and that top–down factors can influence the demography of plants in this extensive and biodiversity‐rich biome in previously unexplored ways.  相似文献   

4.
Herbivory: effects on plant abundance, distribution and population growth   总被引:8,自引:0,他引:8  
Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether particular plant life-history types are predictably more vulnerable to herbivory at the population level, (iii) whether the strength of plant-consumer interactions shifts predictably across environmental gradients and (iv) the role of consumers in influencing plant distributional limits. Existing studies demonstrate numerous examples of consumers limiting local plant abundance and distribution. We found larger effects of consumers on grassland than woodland forbs, stronger effects of herbivory in areas with high versus low disturbance, but no systematic or unambiguous differences in the impact of consumers based on plant life-history or herbivore feeding mode. However, our ability to evaluate these and other patterns is limited by the small (but growing) number of studies in this area. As an impetus for further study, we review strengths and challenges of population-level studies, such as interpreting net impacts of consumers in the presence of density dependence and seed bank dynamics.  相似文献   

5.
T. Juenger  J. Bergelson 《Oecologia》2000,123(3):358-363
We performed a factorial combination of seed additions, surface soil disturbance, and protection from potential seed predation in experimental plots to elucidate the relative importance of each factor in the recruitment of scarlet gilia seedlings. We detected a significant interaction between seed addition and surface soil disturbance on seedling recruitment over 2 years of establishment. Plots that received both supplemental seed addition and disturbance established 10.5 times as many rosettes as control plots. We did not detect main or interactive effects of caging on seedling establishment. We explored the importance of density-dependent recruitment by investigating the number of rosettes per experimental plot through time. In addition, we used planned contrasts to compare the absolute and percent changes in control and treatment plot rosette densities between the study years. We found significant downward concave curvature to the seedling recruitment curve, suggesting negative density-dependent recruitment across the experimental range of rosette densities. We found a significant difference between the control plots and the seed addition-disturbance plots in terms of absolute changes in plot density from 1997 to 1998. Greater net mortality occurred in plots that received both seed addition and disturbance. However, we found no differences among treatments in the percent change in rosette density across the study years. Our study demonstrates that seedling recruitment in natural plant populations may be limited by the interaction of seed and microsite availability, and that seedling recruitment in scarlet gilia may be negatively density dependent. Our results suggest that the fecundity effects of particular plant-animal interactions (e.g., pollination, herbivory) may affect scarlet gilia population dynamics, particularly under conditions of high soil disturbance. Received: 11 June 1999 / Accepted: 24 November 1999  相似文献   

6.
Although herbivory often reduces the reproduction of attacked trees, few studies have examined how naturally occurring insect-resistant and susceptible trees differ in their reproduction, nor have these effects been experimentally examined through long-term herbivore removals. In addition, few studies have examined the effects of herbivory on the quality of seeds produced and the implications of reduced seed quality on seedling establishment. We evaluated the impact of chronic herbivory by the stem-boring moth, Dioryctria albovittella, on cone and seed production of the pinyon pine (Pinus edulis) during two mast years. Three patterns emerged. First, moth herbivory was associated with reductions in cone production, viable seed production and seed mass. Specifically, pinyons susceptible to moth attack had 93–95% lower cone production, and surviving cones produced 31–37% fewer viable seeds, resulting in a 96–97% reduction in whole tree viable seed production. In addition, surviving seeds from susceptible trees had 18% lower mass than resistant trees. Second, long-term experimental removal of the herbivore resulted in increased rates of cone and seed production and quality, indicating that moth herbivory was the driver of these reductions. Third, seed size was positively associated with seed germination and seedling biomass and height, suggesting that trees suffering chronic herbivory produce poorer quality offspring. Thus, the resistance traits of pinyons can affect the quality of offspring, which in turn may affect subsequent seedling establishment and population dynamics.  相似文献   

7.
Henry F. Howe 《Oecologia》1989,79(3):417-426
Summary Fruit-eating animals deposit viable seeds in patterns that determine the conditions under which seeds and seedlings live or die. Many tree species are scatter-dispersed by birds, bats, or other small frugivores that regurgitate, defecate, or drop seeds singly or in pairs. These scatterdispersed plant species normally recruit as isolated individuals, and are unlikely to evolve exceptional resistance to herbivores, pathogens, or to other sources of density-dependent seed or seedling mortality. Other tree species are clump-dispersed by larger terrestrial or arboreal frugivores that defecate seeds in masses which produce bouquets of seedlings. Because their seeds invariably germinate in close proximity to other seedlings, clump-dispersed species necessarily evolve chemical or mechanical defenses against seed predators, pathogens, and herbivores that act in a densitydependent manner.Population and genetic attributes should reflect this basic dichotomy in the conditions of seedling recruitment. I predict that seedlings of scatter-dispersed species rarely survive near parents or in dense aggregations under frugivore roosts. Seed dispersal should be mandatory, often to light gaps or other special habitats. Outbred adults and juveniles are expected to exist at low densities in loose aggregations or random distributions. Seedlings of clump-dispersed trees are pre-adapted for survival in dense aggregations near parents, as well as in fecal clumps. Substantial recruitment of juveniles and young adults should occur from undispersed seeds under and near parent trees. Such species should be common, highly aggregated, and show strong genetic family structure. Because recruitment requires dispersal, scatter-dispersed plant species should be especially vulnerable to loss of dispersal agents. Because offspring consistently recruit near parents, clump-dispersed plants should be less vulnerable to temporary loss of dispersal agents.  相似文献   

8.
Abstract. Aesculus turbinata is a tree species with large seeds (6.2 g mean dry weight). We studied the demography of its seeds and seedlings in a temperate deciduous forest in northern Japan to elucidate the ecological significance of large seeds with special reference to herbivory and secondary dispersal. Both seed and seedling stages suffered greatly from herbivores. Seedling herbivory was important judged from experiments with shoot clipping and hypogeal cotyledon removal. However, some seedlings survived through re-sprouting after herbivory. Survival rate and percentage resprouting seedlings were lower than those with remaining cotyledons, though seedling size was not affected. This suggests that stored resources in hypogeal cotyledons are working as a kind of ‘risk hedge’ against severe aboveground shoot clipping experienced by A. turbinata. The spatial distribution of seedlings was expanded via seed scatter-hoarding by rodents. Seedling survival rate was higher within canopy gaps than under closed canopy, indicating that canopy gaps are safe sites for establishment, and was negatively correlated with seedling density. Therefore, secondary seed dispersal in this species seems to be effective in ‘finding’ safe sites and in ‘escaping’ density-dependent mortality. The large seeds and seedlings of A. turbinata are attractive to herbivores, but the high resistance of seedlings to herbivory due to large reserves and the effective secondary dispersal appear to mitigate these disadvantages.  相似文献   

9.
Summary The nature of the mortality of germinating seeds of Vicia sativa, the common vetch, was investigated in a pot trial under controlled conditions. Chafer and tipulid larvae were restricted by nylon mesh partitions to enable radicle and/or hypocotyl herbivory to occur. The effects of the two insects were very similar. In control situations, an average of 88% of the viable seed sown recruited successfully. Hypocotyl and radicle herbivory had similar effects on seedling mortality, with recruitment of viable seed sown being reduced to 52%. When both modes of attack occurred together, successful recruitment was only 34%. Feeding on both plant parts resulted in an average post-emergence mortality of 14% of the seed sown, but the effect on pre-emergence mortality was of greater importance, amounting to 41%. The mechanisms by which soil-dwelling herbivores may cause seedling mortality in the field are discussed.  相似文献   

10.
Conspecific negative distance- and density-dependence is often assumed to be one of the most important mechanisms controlling forest community assembly and species diversity globally. Plant pathogens, and insect and mammalian herbivores, are the most common natural enemy types that have been implicated in this phenomenon, but their general effects at different plant life stages are still unclear. Here, we conduct a meta-analysis of studies that involved robust manipulative experiments, using fungicides, insecticides and exclosures, to assess the contributions of different natural enemy types to distance- and density-dependent effects at seed and seedling stages. We found that distance- and density-dependent mortality caused by natural enemies was most likely at the seedling stage and was greater at higher mean annual temperatures. Conspecific negative distance- and density-dependence at the seedling stage is significantly weakened when fungicides were applied. By contrast, negative conspecific distance- and density-dependence is not a general pattern at the seed stage. High seed mass reduced distance- and density-dependent mortality at the seed stage. Seed studies excluding only large mammals found significant negative conspecific distance-dependent mortality, but exclusion of all mammals resulted in a non-significant effect of conspecifics. Our study suggests that plant pathogens are a major cause of distance- and density-dependent mortality at the seedling stage, while the impacts of herbivores on seedlings have been understudied. At the seed stage, large and small mammals, respectively, weaken and enhance negative conspecific distance-dependent mortality. Future research should identify specific agents of mortality, investigate the interactions among different enemy types and assess how global change may affect natural enemies and thus influence the strength of conspecific distance- and density-dependence.  相似文献   

11.
Anna Jakobsson  Ove Eriksson 《Oikos》2000,88(3):494-502
In this study we analyse relationships between seed number, seed size, seedling size and recruitment success in grassland plants. The often hypothesised trade-off between seed size and seed number was supported by a cross-species analysis and by an analysis of 35 phylogenetically independent contrasts, derived from a data-set of 72 species. Apart from among-species relatedness, we also controlled for possible confounding effect of plant size that may influence both seed size and seed number. A sowing experiment with 50 species was performed in the field. The seeds were sown in a grassland and subjected to two treatments, disturbance and undisturbed sward. Evidence for seed-limited recruitment was obtained for 45 of the species. Disturbance had a significant, or nearly significant, positive effect on recruitment for 16 of the 45 species. The relative recruitment in undisturbed sward increased with increased seed size, and both recruitment success and seedling size were positively related to seed size. We suggest that a trade-off between competitive ability and number of recruitment opportunities follows from the trade-off between seed size and seed number, through a causal chain from seed size via seedling size to recruitment success. The relationships between seed size, seed number and recruitment may be an important underlying mechanism for abundance and dynamics of plant species in grassland vegetation. This is an example of a direct link between evolutionary life-history theory, and theory of plant community structure.  相似文献   

12.
Figuerola  Jordi  Green  Andy J. 《Plant Ecology》2004,173(1):33-38
The ingestion of seeds by vertebrates usually affects the viability and/or germination rate of seeds. Increases in germination rate following passage through the vertebrate gut have often been assumed to be favourable for seedling survival and plant fitness, but this assumption has never been tested experimentally. Given that numbers of herbivorous waterfowl are higher in winter in Mediterranean wetlands, herbivory pressure there will be higher for early growing plants. In a factorial experiment we investigated the effects of seed ingestion by ducks (shoveler, Anas clypeata) on the survival of wigeongrass Ruppia maritima seedlings in the field in Doñana (south-west Spain), under differing exposures to herbivory by waterfowl and fish. We planted ingested and non-ingested seeds in December, using exclosures to protect half of them from herbivores. When they were protected inside exclosures, there was no difference between ingested and non-ingested seeds in the number of plants that survived until June-July. However, fewer plants survived from ingested seeds when exposed to natural levels of herbivory because they were exposed for longer than plants germinating from non-ingested seeds. In conclusion, increases in germination rate after ingestion are not necessarily beneficial for the plant, and the final outcome depends on complex interactions with other factors such as herbivore abundance.  相似文献   

13.
In clonal plants, vegetative parts may outcompete seeds in the absence of disturbance, limiting the build‐up of genotypic diversity through repeated seedling recruitment (RSR). Herbivory may provide disturbance and trigger establishment of strong colonizers (seeds) at the expense of strong competitors (clonal propagules). In the clonal aquatic fennel pondweed Potamogeton pectinatus, two distinct herbivore guilds may modify the dynamics of propagation. In winter, Bewick's swans may deplete patches of tubers, promoting seedling establishment in spring. In summer, seed consumption by waterfowl can reduce the density of viable seeds but grazing may also reduce tuber production and hence facilitate seedling establishment. This study is among the first to experimentally test herbivore impact on plant genotypic diversity. We assess the separate and combined effects of both herbivore guilds on genotypic diversity and structure of fennel pondweed beds. Using microsatellites, we genotyped P. pectinatus from an exclosure experiment and assessed the contribution of herbivory, dispersal and sexual reproduction to the population genetic structure. Despite the predominance of clonal propagation in P. pectinatus, we found considerable genotypic diversity. Within the experimental blocks, kinship among genets decreased with geographic distance, clearly identifying a role for RSR in the maintenance of genotypic diversity within the fennel pondweed beds. However, over a period of five years, none of the herbivory treatments affected genotypic diversity. Hence, sexual reproduction on a local scale is important in this putatively clonal plant and possibly sufficient to ensure a relatively high genotypic diversity even in the absence of herbivores. Although we cannot preclude a role of herbivory in shaping genotypic diversity of a clonal plant, after five years of exclusion of the two investigated herbivore guilds no measurable effect on genotypic diversity was detected.  相似文献   

14.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

15.
Whether seed consumers affect plant establishment is an important unresolved question in plant population biology. Seed consumption is ubiquitous; at issue is whether seedling recruitment is limited by safe-sites or seeds. If most seeds inhabit sites unsuitable for germination, post-dispersal seed consumption primarily removes seeds that would otherwise never contribute to the population and granivory has minimal impacts on plant abundance. Alternatively, if most seeds ultimately germinate before they lose viability, there is greater potential for seed consumption to affect plant recruitment. Of the many studies on seed consumption, few ask how seed loss affects seedling recruitment for species with long-lived seed banks. We examined post-dispersal seed predation and seedling emergence in bush lupine (Lupinus arboreus), a woody leguminous shrub of coastal grasslands and dunes in California. We followed the fate of seeds in paired experimental seed plots that were either protected or exposed to rodent granivores in grassland and dune habitats. Significantly more seeds were removed by rodents in dunes than grasslands. In dunes, where rodent granivory was greatest (65% and 86% of seeds removed from plots by rodents in two successive years), there is a sparse seed bank (6.6 seeds m−2), and granivory significantly reduced seedling emergence (in the same two years, 18% and 19.4% fewer seedlings emerged from exposed versus protected plots), suggesting seed rather than safe-site limited seedling recruitment. In contrast, rodents removed an average of 6% and 56% of seeds from grassland plots during the same two years, and the grassland seed bank is 43-fold that of the dunes (288 seeds m−2). Even high seed consumption in the second year of the study only marginally influenced recruitment because seeds that escaped predation remained dormant. Burial of seeds in both habitats significantly reduced the percentage of seeds removed by rodents. Results suggest that granivores exert strong but habitat-dependent effects on lupine seed survival and seedling emergence. Received: 24 October 1996 / Accepted: 4 February 1997  相似文献   

16.
Two venerable hypotheses, widely cited as explanations for either the success or failure of introduced species in recipient communities, are the natural enemies hypothesis and the biotic resistance hypothesis. The natural enemies hypothesis posits that introduced organisms spread rapidly because they are liberated from their co‐evolved predators, pathogens and herbivores. The biotic resistance hypothesis asserts that introduced species often fail to invade communities because strong biotic interactions with native species hinder their establishment and spread. We reviewed the evidence for both of these hypotheses as they relate to the importance of non‐domesticated herbivores in affecting the success or failure of plant invasion.
To evaluate the natural enemies hypothesis, one must determine how commonly native herbivores have population‐level impacts on native plants. If native herbivores seldom limit native plant abundance, then there is little reason to think that introduced plants benefit from escape from these enemies. Studies of native herbivore‐native plant interactions reveal that plant life‐history greatly mediates the strength with which specialist herbivores suppress plant abundance. Relatively short‐lived plants that rely on current seed production for regeneration are most vulnerable to herbivory that reduces seed production. As such, these plants may gain the greatest advantage from escaping their specialist enemies in recipient communities. In contrast, native plants that are long lived or that possess long‐lived seedbanks may not be kept “in check” by native herbivores. For these species, escape from native enemies may have little to do with their success as exotics; they are abundant both where they are native and introduced.
Evidence for native herbivores providing biotic resistance to invasion by exotics is conflicting. Our review reveals that: 1) introduced plants can attract a diverse assemblage of native herbivores and that 2) native herbivores can reduce introduced plant growth, seed set and survival. However, the generality of these impacts is unclear, and evidence that herbivory actually limits or reduces introduced plant spread is scarce. The degree to which native herbivores provide biotic resistance to either exotic plant establishment or spread may be greatly determined by their functional and numerical responses to exotic plants, which we know little about. Generalist herbivores, through their direct effects on seed dispersal and their indirect effects in altering the outcome of native–non‐native plant competitive interactions, may have more of a facilitative than negative effect on exotic plant abundance.  相似文献   

17.
Lupines (Lupinus lepidus var. lobbii), the earliest plant colonists of primary successional habitats at Mount St. Helens, were expected to strongly affect successional trajectories through facilitative effects. However, their effects remain localized because initially high rates of reinvasive spread were short lived, despite widespread habitat availability. We experimentally tested whether insect herbivores, by reducing plant growth and fecundity at the edge of the expanding lupine population, could curtail the rate of reinvasion and whether those herbivores had comparable impacts in the older, more successionally advanced core region. We found that removing insect herbivores increased both the areal growth of individual lupine plants and the production of new plants in the edge region, thereby accelerating the lupine's intrinsic rate of increase at the front of the lupine reinvasion. We found no such impacts of herbivory in the core region, where low plant quality or a complex of recently arrived natural enemies may hold herbivores in check. In the context of invasion theory, herbivore-mediated decreases in lupine population growth rate in the edge region translate into decreased rates of lupine spread, which we quantify here using diffusion models. In the Mount St. Helens system, decreased rate of lupine reinvasion will result in reductions in rates of soil formation, nitrogen input, and entrapment of seeds and detritus that are likely to postpone or alter trajectories of primary succession. If the type of spatial subtleties in herbivore effects we found here are common, with herbivory focused on the edge of an expanding plant population and suppressed or ineffective in the larger, denser central region (where the plants might be more readily noticed and studied), then insect herbivores may have stronger impacts on the dynamics of primary succession and plant invasions than previously recognized.  相似文献   

18.
Thermal control of treeline position is mediated by local environmental and ecological factors, making trends in treeline migration difficult to extrapolate geographically. We investigated the ecological dynamics of conifer establishment at treeline in the Mealy Mountains (Labrador, Canada) and the potential for its expansion with climate warming. Available seedbed and tree seedling emergence in the treeline ecotone were monitored, and seeds and seedlings of Picea mariana were planted along an elevational gradient from open-canopy forest through tree islands to alpine tundra. Experimental treatments included passive warming of daytime air, ground disturbance, and vertebrate herbivore exclosures. Responses in seed germination and seedling growth, damage, and mortality were monitored over two growing seasons, and re-surveyed after 5 years. While no tree seedlings were observed growing naturally above the treeline, planted seeds were able to germinate, develop and overwinter, and persist for 4 years in all habitats examined. Disturbance of the seedbed was important for seedling emergence in the forest and tree islands. While temperature enhancement alone had little impact on emergence, even moderate temperature increases had significantly disproportionate effects on emergence of seedlings in the alpine habitat when combined with soil disturbance, indicating that future climate warming could lead to treeline advance if viable seed and suitable substrate for recruitment are available. The positive effect of excluding herbivores suggests that herbivory may be an important filter modifying future species distribution. While seedbed conditions and herbivory would control the rate of individual species advance, the results indicate potential upslope migration of the treeline in the Mealy Mountains, with consequent loss of alpine ecosystems.  相似文献   

19.
We explored consequences of spatial and temporal heterogeneity in herbivory on the survival, growth, and reproduction of the Californian native dune thistle, Cirsium occidentale, in coastal and inland sites, for 2 years. We assessed the relative impacts of insect and mammalian herbivores and compared the relative importance of herbivory in coastal and inland habitats and among locations with different microclimates across a coastal dune. Effects of insect and mammalian herbivores were tested with a combination of insecticidal spray and cage exclusion treatments in a factorial experiment at the coastal site. Mammalian herbivores strongly affected the population dynamics of C. occidentale in both years, and their effects were augmented by fungal infection (1991), herbivory by stem-borers (1990) and, to a lesser extent, by insect seed predators in both years. Mammals caused most plant deaths, but the mammal species responsible differed among sites. Rabbit herbivory altered the vegetative growth of coastal thistles and significantly modified other key aspects of Cirsium demography, including growth rate and timing of reproduction. Small, uncaged plants grazed by rabbits took at least 1 year longer to mature than did caged plants. Larvae of Pyrausta subsequalis were the only insects that killed established plants. In 1990 and 1991, the numbers of insects damaging seed heads before dispersal were low, but were sufficient to cause receptacle and seed damage. The number of mature, undamaged seeds (and percent successful seed production) was reduced significantly only for heads infested by fungi near the ocean in 1991: the fungus occurred in 37% of heads and caused a 77% reduction in mature seeds. Received: 21 October 1996 / Accepted: 27 March 1997  相似文献   

20.
Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8‐ and 14‐year‐old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California—coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and Oregon white oak (Q. garryana). Although impacts varied somewhat by species and experiment, herbivory by black‐tailed deer (Odocoileus hemionus columbianus) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus and Peromyscus maniculatus) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号