首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the adenylate cyclase activator forskolin on bone resorption and cyclic AMP accumulation was studied in an organ-culture system by using calvarial bones from 6-7-day-old mice. Forskolin caused a rapid and fully reversible increase of cyclic AMP, which was maximal after 20-30 min. The phosphodiesterase inhibitor rolipram (30 mumol/l), enhanced the cyclic AMP response to forskolin (50 mumol/l) from a net cyclic AMP response of 1234 +/- 154 pmol/bone to 2854 +/- 193 pmol/bone (mean +/- S.E.M., n = 4). The cyclic AMP level in bones treated with forskolin (30 mumol/l) was significantly increased after 24 h of culture. Forskolin, at and above 0.3 mumol/l, in the absence and the presence of rolipram (30 mumol/l), caused a dose-dependent cyclic AMP accumulation with an calculated EC50 (concentration producing half-maximal stimulation) value at 8.3 mumol/l. In 24 h cultures forskolin inhibited spontaneous and PTH (parathyroid hormone)-stimulated 45Ca release with calculated IC50 (concentration producing half-maximal inhibition) values at 1.6 and 0.6 mumol/l respectively. Forskolin significantly inhibited the release of 3H from [3H]proline-labelled bones stimulated by PTH (10 nmol/l). The inhibitory effect by forskolin on PTH-stimulated 45Ca release was significant already after 3 h of culture. In 24 h cultures forskolin (3 mumol/l) significantly inhibited 45Ca release also from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxycholecalciferol (0.1 mumol/l). The inhibitory effect of forskolin on spontaneous and PTH-stimulated 45Ca release was transient. A dose-dependent stimulation of basal 45Ca release was seen in 120 h cultures, at and above 3 nmol of forskolin/l, with a calculated EC50 value at 16 nmol/l. The stimulatory effect of forskolin (1 mumol/l) could be inhibited by calcitonin (0.1 unit/ml), but was insensitive to indomethacin (1 mumol/l). Forskolin increased the release of 3H from [3H]proline-labelled bones cultured for 120 h and decreased the amount of hydroxyproline in bones after culture. Forskolin inhibited PTH-stimulated release of Ca2+, Pi, beta-glucuronidase and beta-N-acetylglucosaminidase in 24 h cultures. In 120 h cultures forskolin stimulated the basal release of minerals and lysosomal enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have utilized the adenylate cyclase stimulator, cholera toxin, as a tool to test the role of cyclic AMP as a mediator of the effects on bone resorption by the calcium-regulating hormones, parathyroid hormone (PTH) and calcitonin. The effects on bone resorption were studied in an organ culture system using calvarial bones from newborn mice. Cyclic AMP response was assayed in calvarial bone explants and isolated osteoblasts from neonatal mouse calvaria. Cholera toxin caused a dose-dependent cAMP response in calvarial bones, seen at and above approx. 1-3 ng/ml and calculated half-maximal stimulation (EC50) at 18 ng/ml. The stimulatory effect of cholera toxin could be potentiated by the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 0.2 mmol/l). Cyclic AMP accumulation in the bones was maximal after 4-6 h, and thereafter declined. However, activation of the adenylate cyclase was irreversible and the total amount (bone + medium) of cAMP produced, in the presence of IBMX (0.2 mmol/l), increased with time, for at least 48 h. In osteoblast-like cells cholera toxin (1 microgram/ml) stimulated the cellular levels of cAMP with a peak after 60-120 min, which could be potentiated with IBMX. The total cAMP accumulation indicated an irreversible response. In short-term bone organ cultures (at most, 24 h) cholera toxin, at and above 3 ng/ml, inhibited the stimulatory effect of PTH (10 nmol/l) on 45Ca release from prelabelled calvarial bones. The inhibitory effect of cholera toxin (0.1 microgram/ml) on 45Ca release was significant after 6 h and the calculated IC50 value at 24 h was 11.2 ng/ml. Cholera toxin (0.1 microgram/ml) also inhibited PTH-stimulated (10 nmol/l) release of Ca2+, inorganic phosphate (Pi), beta-glucuronidase, beta-N-acetylglucosaminidase and degradation of organic matrix (release of 3H from [3H]proline-labelled bones) in 24 h cultures. 45Ca release from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxyvitamin D3 (0.1 mumol/l) was also inhibited by cholera toxin (0.3 microgram/ml) in 24-h cultures. The inhibitory effect of cholera toxin on bone resorption was transient, and in long-term cultures (120 h) cholera toxin caused a dose-dependent, delayed stimulation of mineral mobilization (Ca2+, 45Ca, Pi), degradation of matrix and release of the lysosomal enzymes beta-glucuronidase and beta-N-acetylglucosaminidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effect of bradykinin on bone resorption was studied in cultures of newborn-mouse calvaria. Bradykinin (0.03 microM, 1 microM) stimulated the release of 45Ca2+ from bones dissected out from mice prelabelled in vivo with 45Ca. Bradykinin (1 microM) also augmented the release of stable calcium ( 40Ca ), Pi and the lysosomal enzyme beta-glucuronidase. The stimulatory effect of bradykinin on mineral mobilization and lysosmal -enzyme release could be blocked by indomethacin. It is speculated that concomitant generation of thrombin and bradykinin in areas of trauma and inflammation may induce resorption of nearby bone tissue.  相似文献   

4.
The effect of 2-chloroadenosine on bone resorption was studied in calvarial bones from 6-7-day-old mice in organ culture. 2-Chloroadenosine stimulated the mobilization of minerals (40Ca, 45Ca) and increased the degradation of matrix ([3H]proline) from the bones. The nucleoside also caused an increased release of beta-glucuronidase, a lysosomal enzyme. In doses above 30 microM 2-chloroadenosine was cytotoxic, as evidenced by an increased release of lactate dehydrogenase. 2-Chloroadenosine-stimulated resorption could be inhibited by calcitonin, increased concentration of phosphate in culture medium, cortisone, dexamethasone, indomethacin, naproxen, meclofenamic acid and 5,8,11,14-eicosatetraynoic acid. 2-Chloroadenosine was much more sensitive to inhibition by dexamethasone than was parathyroid hormone. The response to the maximal dose of 2-chloroadenosine could not be enhanced by parathyroid hormone, 1 alpha-hydroxyvitamin D-3 and prostaglandin E2. An exposure to 2-chloroadenosine for 12 h was not sufficient to produce prolonged resorption. The results suggest that 2-chloroadenosine stimulated bone resorption by a process which is dependent on osteoclastic activity. The possibility that the effect of 2-chloroadenosine, either directly or indirectly, is related to formation of prostaglandins is discussed in the light of the above data.  相似文献   

5.
Osteopontin is an RGDS-containing protein that acts as a ligand for the alpha(v)beta(3) integrin, which is abundantly expressed in osteoclasts, cells responsible for bone resorption in osteopenic diseases such as osteoporosis and hyperparathyroidism. However, the role of osteopontin in the process of bone resorption has not yet been fully understood. Therefore, we investigated the direct function of osteopontin in bone resorption using an organ culture system. The amount of (45)Ca released from the osteopontin-deficient bones was not significantly different from the basal release from wild type bones. However, in contrast to the parathyroid hormone (PTH) enhancement of the (45)Ca release from wild type bones, PTH had no effect on (45)Ca release from organ cultures of osteopontin-deficient bones. Because PTH is located upstream of receptor activator of NF-kappaB ligand (RANKL), that directly promotes bone resorption, we also examined the effect of RANKL. Soluble RANKL with macrophage-colony stimulating factor enhanced (45)Ca release from the bones of wild type fetal mice but not from the bones of osteopontin-deficient mice. To obtain insight into the cellular mechanism underlying the phenomena observed in osteopontin-deficient bone, we investigated the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bones subjected to PTH treatment in cultures. The number of TRAP-positive cells was increased significantly by PTH in wild type bone; however, no such PTH-induced increase in TRAP-positive cells was observed in osteopontin-deficient bones. These results indicate that the absence of osteopontin suppressed PTH-induced increase in bone resorption via preventing the increase in the number of osteoclasts in the local milieu of bone.  相似文献   

6.
The effects of K+ and the Ca2+ channel blocker D-600 on parathyroid hormone (PTH) release and cytoplasmic Ca2+ activity (Ca2+i) were measured at different Ca2+ concentrations in dispersed parathyroid cells from normal cattle and from patients with hyperparathyroidism. When the extracellular Ca2+ concentration was raised within the 0.5-3.0 mM range Ca2+i increased and PTH secretion was inhibited. There was also a stimulatory effect of Ca2+ on secretion as indicated by a parallel decrease of Ca2+i and PTH release when extracellular Ca2+ was reduced to less than 25 nM. Addition of 30-50 mM K+ stimulated PTH release and lowered Ca2+i. The effect of K+ was less pronounced in the human cells with a decreased suppressability of PTH release. The Ca2+ channel blocker D-600 had no effect on Ca2+i and PTH release in the absence of extracellular Ca2+. However, at 0.5-1.0 mM Ca2+, D-600 increased Ca2+i and inhibited PTH release, whereas the opposite effects were obtained at 3.0 mM Ca2+. The transition from inhibition to stimulation occurred at a higher Ca2+ concentration in the human cells and the right-shift in the dose-effect relationship for Ca2+-inhibited PTH release tended to be normalized by D-600. It is suggested that K+ stimulates PTH release by increasing the intracellular sequestration of Ca2+ and that the reduced response in the parathyroid human cells is due to the fact that Ca2+i already is lowered. D-600 appears to have both Ca2+ agonistic and antagonistic actions in facilitating and inhibiting Ca2+ influx into the parathyroid cells at low and high concentrations of extracellular Ca2+, respectively. D-600 and related drugs are considered potentially important for the treatment of hyperparathyroidism.  相似文献   

7.
Chronic inflammatory processes are often associated with bone resorption. Stimulated by the current great interest in the role of coagulation factors in inflammation and immune injury, we have studied the effect of thrombin on mouse calvarial bones in vitro. Thrombin caused a dose-dependent (0.1-7 U/ml) stimulation of 45Ca release from neonatal mouse calvarial bones. Thrombin also stimulated the mobilization of stable calcium and inorganic phosphate, the release of 3H from [3H]proline-labelled calvaria, the production of lactate and the release of the lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase. Thrombin also enhanced 45Ca release from fetal rat long bones, although this bone resorption assay was less sensitive to thrombin than the mouse calvarial system. The bone resorption stimulatory activity of thrombin in mouse calvaria could be inhibited by calcitonin and an increased concentration of phosphate in the culture medium. Thrombin-induced 45Ca release in mouse calvaria was sensitive to inhibition by hydrocortisone and dexamethasone. By contrast, 45Ca release response to parathyroid hormone was insensitive to corticosteroids. The prostaglandin synthetase inhibitors indomethacin, meclofenamic acid and naproxen and 5,8,11,14-eicosatetraynoic acid reduced 45Ca release from thrombin-stimulated calvaria. However, significant stimulation by thrombin could be achieved also in bones treated with inhibitors of arachidonate metabolism. The results obtained suggest that thrombin can stimulate cell-mediated bone resorption by an osteoclast-dependent mechanism. The mechanism of action may involve both prostaglandin-dependent and prostaglandin-independent pathways. Our findings indicate that thrombin may contribute to the bone resorptive processes seen in periodontal disease and rheumatoid arthritis.  相似文献   

8.
The aim here was to examine the possible roles of adenylyl cyclase- and protein kinase A (PKA)-dependent processes in ionotropic glutamate receptor (iGluR)-mediated neurotransmission using superfused mouse striatal slices and a non-metabolized L-glutamate analogue, D-[3H]aspartate. The direct and indirect presynaptic modulation of glutamate release and its susceptibility to changes in the intracellular levels of cyclic AMP (cAMP), Ca(2+) and calmodulin (CaM) and in protein phosphorylation was characterized by pharmacological manipulations. The agonists of iGluRs, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate, stimulated the basal release of D-[3H]aspartate, while N-methyl-D-aspartate (NMDA) was without effect. Both the AMPA- and kainate-mediated responses were accentuated by the beta-adrenoceptor agonist isoproterenol. These facilitatory effects were mimicked by the permeable cAMP analogue dibutyryl-cAMP. The beta-adrenoceptor antagonist propranolol, the adenylyl cyclase inhibitor MDL12,330A, the inhibitor of PKA and PKC, H-7, and the PKA inhibitor H-89 abolished the isoproterenol effect on the kainate-evoked release. The dibutyryl-cAMP-induced potentiation was also attenuated by H-7. Isoproterenol, propranolol and MDL12,330A failed to affect the basal release of D-[3H]aspartate, but dibutyryl-cAMP was inhibitory and MDL12,330A activatory. In Ca(2+)-free medium, the kainate-evoked release was enhanced, being further accentuated by the CaM antagonists calmidazolium and trifluoperazine, though these inhibited the basal release. The potentiating effect of calmidazolium on the kainate-stimulated release was counteracted by both MDL12,330A and H-7.We conclude that AMPA- and kainate-evoked glutamate release from striatal glutamatergic terminals is potentiated by beta-adrenergic receptor-mediated adenylyl cyclase activation and cAMP accumulation. Glutamate release is enhanced if the Ca(2+)- and CaM-dependent, kainate-evoked processes do not prevent the excessive accumulation of intracellular cAMP.  相似文献   

9.
The uptake and the washout of 45Ca2+ and 32Pi is described in free fat-cells and whole epididymal fat-pads from fed rats. 2. In isolated fat-cells, the uptake of 45Ca2+ proceeds with an initial rapid phase of about 1 min duration, followed by a slower subsequent accumulation. In contrast with the rapid phase, the slow phase is inhibited by 2,4-dinitrophenol, warfarin, oligomycin and verapamil, shows saturation, and presumably represents transport across the plasma membrane. 3. The washout of 45Ca2+ from preloaded cells consists of a rapid (1 min) initial phase and a slow phase which is non-monoexponential, suggesting that the radioactive isotope is released from several cellular pools. 4. When Pi is omitted from the incubation medium, the slow phase of 45Ca uptake is almost abolished, and the washout of 45Ca from preloaded fat-cells is markedly accelerated. At elevated extracellular concentrations of Pi (2,4-6.2mM), the uptake of 45Ca is stimulated by 2-10-fold, and the release of the radioactive isotope from preloaded cells is inhibited. In whole epididymal fat-pads, variations in the extracellular concentration of Pi have no detectable effect on the uptake or the washout of 45Ca. 5. In isolated fat-cells, the accumulation of 32Pi is inhibited by 2,4-dinitrophenol or the omission of glucose from the incubation medium. In a Ca2+-depleted buffer, the uptake of 32Pi is diminished, and hyperosmolarity, which stimulates 45Ca uptake, also accelerates the accumulation of 32Pi. 6. It is concluded that in free fat-cells, the uptake and release of Ca2+ and Pi take place by closely interrelated processes, which are dependent on mitochondrial energy production.  相似文献   

10.
Parathyroid hormone (PTH) (0.1-10 ng/ml) evokes a dose-dependent increase in 45Ca2+ accumulation in synaptosomes isolated from the rat brain cortex. In the presence of PTH the fast (I sec) potential-dependent 45Ca2+ uptake was less than in the control. PTH had no effect on 3H-GABA uptake by synaptosomes (P2 fraction). Synaptosomes preincubated in the presence of PTH in Ca2+-free medium and transferred into Ca2+-containing normal medium released more 3H-GABA than control synaptosomes. In this case depolarization-evoked 3H-GABA release was diminished.  相似文献   

11.
Increasing evidence suggests that a continuous release of histamine from mast cells occurs in the airways of asthmatic patients and that histamine may modulate functions of other inflammatory cells such as macrophages. In the present study histamine (10(-9)-10(-6) M) increased in a concentration-dependent fashion the basal release of beta-glucuronidase (EC(50) = 8.2 +/- 3.5 x 10(-9) M) and IL-6 (EC(50) = 9.3 +/- 2.9 x 10(-8) M) from human lung macrophages. Enhancement of beta-glucuronidase release induced by histamine was evident after 30 min and peaked at 90 min, whereas that of IL-6 required 2-6 h of incubation. These effects were reproduced by the H(1) agonist (6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptane carboxamide but not by the H(2) agonist dimaprit. Furthermore, histamine induced a concentration-dependent increase of intracellular Ca(2+) concentrations ([Ca(2+)](i)) that followed three types of response, one characterized by a rapid increase, a second in which [Ca(2+)](i) displays a slow but progressive increase, and a third characterized by an oscillatory pattern. Histamine-induced beta-glucuronidase and IL-6 release and [Ca(2+)](i) elevation were inhibited by the selective H(1) antagonist fexofenadine (10(-7)-10(-4) M), but not by the H(2) antagonist ranitidine. Inhibition of histamine-induced beta-glucuronidase and IL-6 release by fexofenadine was concentration dependent and displayed the characteristics of a competitive antagonism (K(d) = 89 nM). These data demonstrate that histamine induces exocytosis and IL-6 production from human macrophages by activating H(1) receptor and by increasing [Ca(2+)](i) and they suggest that histamine may play a relevant role in the long-term sustainment of allergic inflammation in the airways.  相似文献   

12.
Demonstrating 1,25(OH)2D3-stimulated calcium uptake in isolated chick intestinal epithelial cells has been complicated by simultaneous enhancement of both uptake and efflux. We now report that in intestinal cells of adult birds, or those of young birds cultured for 72 h, 1,25(OH)2D3-stimulates 45Ca uptake to greater than 140% of corresponding controls within 3 min of addition. Such cells have lost hormone-stimulated protein kinase C (PKC) activity, believed to mediate calcium efflux. To further test this hypothesis, freshly isolated cells were preincubated with calphostin C, and calcium uptake monitored in the presence or absence of steroid. Only cells treated with the PKC inhibitor demonstrated a significant increase in 45Ca uptake in response to 1,25(OH)2D3, relative to corresponding controls. In addition, phorbol ester was shown to stimulate efflux, while forskolin stimulated uptake. To further investigate the mechanisms involved in calcium uptake, we assessed the role of TRPV6 and its activation by beta-glucuronidase. beta-Glucuronidase secretion from isolated intestinal epithelial cells was significantly increased by treatment with 1,25(OH)2D3, PTH, or forskolin, but not by phorbol ester. Treatment of cells with beta-glucuronidase, in turn, stimulated 45Ca uptake. Finally, transfection of cells with siRNA to either beta-glucuronidase or TRPV6 abolished 1,25(OH)2D3-enhanced calcium uptake relative to controls transfected with scrambled siRNA. Confocal microscopy further indicated rapid redistribution of enzyme and calcium channel after steroid. 1,25(OH)2D3 and PTH increase calcium uptake by stimulating the PKA pathway to release beta-glucuronidase, which in turn activates TRPV6. 1,25(OH)2D3-enhanced calcium efflux is mediated by the PKC pathway.  相似文献   

13.
The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.  相似文献   

14.
In a previous study we noted that the release of D-[3H]aspartate evoked by non-N-methyl-D-aspartate (non-NMDA) receptor agonists in cultured rat cerebellar granule cells was enhanced in the absence of extracellular Na+. To explain this apparent paradox, we tried in the present investigation to correlate the effect of Na+ removal on the kainate (KA)- and quisqualate (QA)-induced D-[3H]aspartate release with that on KA- and QA-induced 45Ca2+ accumulation. The releasing activity of KA, which was only partially Ca2+ dependent in the presence of Na+, became totally Ca2+ dependent in its absence. Moreover, the releasing activity of QA, which was Ca2+ independent in the presence of Na+, became 50% Ca2+ dependent in the absence of the monovalent cation. The releasing action of both agonists was in all cases antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and that induced by KA was also sensitive to kynurenic acid. When glutamate was tested as an agonist in the presence of Na+, it was found that its D-[3H]aspartate releasing action was Ca2+ independent and was largely due to heteroexchange. The evoked release was Ca2+ independent, scarcely sensitive to CNQX, and insensitive to NMDA antagonists. In Na(+)-free medium, the glutamate-evoked D-[3H]aspartate release was lower (due to the abolishment of heteroexchange), but was totally Ca2+ dependent and antagonized by CNQX and kynurenate. KA (30 microM-1 mM) stimulated the accumulation of 45Ca2+ in a dose-dependent and CNQX-sensitive way, the effect being progressively higher as the Na+ concentration in the medium was decreased. Li+ affected KA-induced 45Ca2+ accumulation in a way similar to Na+, although 45Ca2+ uptake was somewhat lower in Li(+)-containing medium. The voltage-activated calcium channel antagonists La3+ and (-)-202-791 caused only a limited inhibition of the KA-induced 45Ca2+ influx both in the presence and in the absence of Na+. Under all the conditions tested [presence and absence of Na+ and of (-)-202-791], the kainate-induced 45Ca2+ uptake was scarcely sensitive to the NMDA antagonist 2-amino-5-phosphonovalerate. QA and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid also stimulated 45Ca2+ influx in a CNQX-sensitive way, the effect being enhanced in Na(+)-free media. These agonists were, however, less effective than KA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
2-Aminoethoxydiphenyl borate (2APB) is a membrane-permeable blocker of the inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release in bi-directional Ca2+ -flux conditions. We have now studied the effects of 2APB on the 45Ca2+ uptake into, and on the basal and IP(3)-stimulated unidirectional 45Ca2+ efflux from the non-mitochondrial Ca2+ stores in permeabilized A7r5 smooth-muscle cells. 2APB inhibited the IP3 -induced Ca2+ release, with a half maximal inhibition at 36 microM 2APB, without affecting [3H]IP3 binding to the receptor. This inhibition did not depend on the IP3, ATP or free Ca2+ concentration. The Ca2+ pumps of the non-mitochondrial Ca2+ stores were half-maximally inhibited at 91microM 2APB. Higher concentrations of 2APB increased the non-specific leak of Ca2+ from the stores. We conclude that 2APB can not be considered as a selective blocker of the IP3 -induced Ca2+ release. Our results can explain the various effects of 2APB observed in intact cells.  相似文献   

16.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

17.
Parathyroid hormone increases cellular cAMP, 1,2-diacylglycerol, inositol 1,4,5-trisphosphate and cytosolic Ca2+ concentration ([Ca2+]i) in OK cells. In the present study, we determined the importance of the PTH-dependent increase in [Ca2+]i in the control of sodium-dependent phosphate (Na+/Pi) cotransport. PTH (10(-7) M) results in a transient increase in [Ca2+]i from basal levels of 67 +/- 4 nM to maximal concentrations of 190 +/- 9 nM. The increase in [Ca2+]i was dose-dependent with half-maximal increases at about 5.10(-8) M PTH. These hormone levels were 10(3)-fold higher than that required for half-maximal inhibition of Na+/Pi cotransport. Clamping [Ca2+]i with either intracellular Ca2+ chelators or by ionomycin in the presence of high concentrations of extracellular Ca2+ did not alter PTH-dependent inhibition of Na/Pi cotransport. Nor did indomethacin, an inhibitor of the cyclooxygenase pathway, influence the hormonal inhibition of cotransport. Accordingly, these data suggest that changes in [Ca2+]i and/or activation of the phospholipase A2 and the cyclooxygenase pathways are not involved in signal induction of the PTH-mediated control of Na+/Pi cotransport.  相似文献   

18.
Both parathyroid hormone (PTH) and calcitonin (CT) can increase the concentration of cyclic 3',5' adenosine monophosphate (cAMP) in fetal rat bone in organ culture. Moreover, dibutyryl cAMP (dbcAMP) can both stimulate and inhibit 45Ca release from such bones depending on dose and experimental conditions. In this study we compared dbcAMP and CT for their effects on bones pretreated with PTH. Both compounds produced transient inhibition of bone resorption followed by escape. Escape from dbcAMP was independent of prostaglandin synthesis, since it occurred both in the presence and absence of indomethacin, a prostaglandin cyclo-oxygenase inhibitor.  相似文献   

19.
Previous attempts to show a direct effect of physiological concentrations of 17 beta-estradiol (beta E2) on bone in vitro have been unsuccessful. We describe a culture system using neonatal mouse calvariae in which beta E2 in the range 1 pM to 1 nM inhibited parathyroid hormone (PTH) stimulated prostaglandin E2 (PGE2) release by 50 to 70% in the presence and absence of cortisol. In addition, beta E2 reduced medium calcium concentration and release of previously incorporated 45Ca by 10 and 20%, respectively, in PTH stimulated cultures. Indomethacin did not block beta E2 effects on resorption. 17 alpha-Estradiol (alpha E2) reduced PTH stimulated 45Ca release but not PGE2 release. Thus, beta E2 has direct effects on bone consistent with its known effects to decrease bone resorption in vivo.  相似文献   

20.
We purified a serum calcium-decreasing factor, which showed chymotrypsin-like protease activity, from porcine pancreas to homogeneity. The factor administered to mice intravenously at a dose of 20 micrograms/kg b.w. decreased serum calcium by 15%. Treatment of the factor with the serine protease inhibitor, PMSF, caused a leftward shift in the dose-response curve, showing strengthened activity. It also caused a decrease in serum calcium and hydroxyproline levels in rats. At a dose of 10 ng/ml, the factor inhibited 45Ca release from cultured fetal long bone stimulated by parathyroid hormone (PTH) and PTH-related protein, but not by interleukin-1 alpha, prostaglandin E1 and 1,25-dihydroxy vitamin D3. No other well-known pancreatic proteases had these effects. In view of the results of experiments using protease inhibitor and pancreatic proteases, and in view of the specificity of this factor in vitro, we propose that the factor exerts its serum calcium-decreasing activity most probably not through proteolytic degradation of PTH, but through an inhibition of PTH action on bones by a yet undefined mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号