首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Multiple reactive oxygen/nitrogen species induce oxidative stress. Mammals have evolved with an elaborate defense network against oxidative stress, in which multiple antioxidant compounds and enzymes with different functions exert their respective roles. Radical scavenging is one of the essential roles of antioxidants and vitamin E is the most abundant and important lipophilic radical-scavenging antioxidant in vivo. The kinetic data and physiological molar ratio of vitamin E to substrates show that the peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen dioxide, and thiyl radicals in vivo. The preventive effect of vitamin E against the oxidation mediated by nonradical oxidants such as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo. The synergistic interaction of vitamin E and vitamin C is effective for enhancing the antioxidant capacity of vitamin E. The in vitro and in vivo evidence of the function of vitamin E as a peroxyl radical-scavenging antioxidant and inhibitor of lipid peroxidation is presented.  相似文献   

2.
Antioxidant activity of carotenoids   总被引:3,自引:0,他引:3  
Carotenoids are pigments which play a major role in the protection of plants against photooxidative processes. They are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals. In the human organism, carotenoids are part of the antioxidant defense system. They interact synergistically with other antioxidants; mixtures of carotenoids are more effective than single compounds. According to their structure most carotenoids exhibit absorption maxima at around 450 nm. Filtering of blue light has been proposed as a mechanism protecting the macula lutea against photooxidative damage. There is increasing evidence from human studies that carotenoids protect the skin against photooxidative damage.  相似文献   

3.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 microM) and lazaroid (IC50 = 5.0 microM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 x 10(3) microM) and trolox (IC5 = 1.2 x 10(3) microM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2'-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2'azobis(2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

4.
The mechanism of lipid peroxidation and the ways in which the rate of this reaction can be reduced by small quantities of certain specific chemicals, called antioxidants, are described. The types and roles of the different antioxidants found in living systems are considered. Vitamin E (alpha-tocopherol) has long been recognized as an important lipid-soluble, chain-breaking antioxidant. It has an unexpectedly high reactivity towards peroxyl radicals, which can be understood only after detailed consideration of its structure. It is the major antioxidant of its class in human blood and its effectiveness in plasma is greatly improved by a synergistic interaction with water-soluble reducing agents such as ascorbic acid. Experiments designed to locate vitamin E within phospholipid bilayers and to discover the origin of the different biopotencies of stereoisomers of alpha-tocopherol are also described.  相似文献   

5.
The oxidative modification of low-density lipoprotein (LDL) plays an important role in atherosclerosis. Protecting LDL from oxidation has been shown to reduce the risk of coronary heart disease. In this study, we compared the protective effects of two lipophilic antioxidants (vitamin E and lazaroid) with two hydrophilic antioxidants (trolox and vitamin C) in the presence of several different free radical generating systems. Vitamin E (IC50 = 5.9 μM) and lazaroid (IC50 = 5.0 μM) were more effective in inhibiting lipid peroxidation caused by a Fe-ADP free radical generating system than vitamin C (IC50 = 5.2 × 103 μM) and trolox (IC5 = 1.2 × 103 μM). Preincubation of lipoproteins with a lipophilic antioxidant increased the protective effect against various free radicals. Preincubation with hydrophilic antioxidants did not have an effect. We also tested the efficacy of the antioxidants when the free radicals were generated within the lipid or the aqueous environment surrounding the LDL. For this purpose, we used the peroxyl generating azo-compounds AMVN (2,2′-azobis(2,4-dimethylvaleronitrile)) and AAPH (2,2′azobis (2-amidinopropane) dihydrochloride). All of the antioxidants tested were more effective against free radicals generated in a water soluble medium than they were against free radicals generated in a lipid environment. In conclusion, our data demonstrate that lipid solubility is an important factor for both the antioxidant and the free radical generating systems in determining the extent of lipid peroxidation in LDL. Our data also demonstrate that antioxidant efficacy in one set of experimental conditions may not necessarily translate into a similar degree of protection in another set of conditions where lipophilicity is a variable.  相似文献   

6.
Convincing evidence suggests that blood redox changes play a role in the development of various cardiovascular disorders including hypertension. Nutritional antioxidants have been suggested to play a role in cardiovascular disease prevention. In this study, we investigated in vivo changes in rat arterial blood pressure induced by acute exposition to an increased load of peroxyl radicals and by the administration of selected antioxidants after chemically induced oxidative stress. Hydrosoluble and liposoluble peroxyl radicals, generated by 2,2'-azobis-(2-amidinopropane) dihydrochloride and 2,2'-azobis 2,4-di-methylvaleronitrile, induced a dose-dependent decrease in rat blood pressure. All antioxidants tested (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, vitamin C, glutathione and dithiothreitol) returned peroxyl radical-induced hypotension to normal. Of the various antioxidants tested, glutathione was the most effective in restoring blood pressure after peroxyl radical generation. Treatment of rats with a thiol-chelating agent (N-ethylmaleimide) and an oxidizing agent (5,5'-dithiobis-2-nitrobenzoic) inhibited peroxyl radical-mediated hypotension. Our results suggest that acute exposition to peroxyl radicals have a hypotensive effect on blood pressure and that thiols play an active role in the redox regulation of blood pressure. Other experiments are needed to clarify the role played by oxidative potentials on blood pressure and the mechanism of action of nutritional antioxidants.  相似文献   

7.
The oxidative hemolysis of rabbit erythrocytes induced by free radicals and its inhibition by chain-breaking antioxidants have been studied. The free radicals were generated from either a water-soluble or a lipid-soluble azo compound which, upon its thermal decomposition, gave carbon radicals that reacted with oxygen immediately to give peroxyl radicals. The radicals generated in the aqueous phase from a water-soluble azo compound induced hemolysis in air, but little hemolysis was observed in the absence of oxygen. Water-soluble chain-breaking antioxidants, such as ascorbic acid, uric acid, and water-soluble chromanol, suppressed the hemolysis dose dependently. Vitamin E in the erythrocyte membranes was also effective in suppressing the hemolysis. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without phytyl side chain, incorporated into dimyristoylphosphatidylcholine liposomes, suppressed the above hemolysis, but alpha-tocopherol did not suppress the hemolysis. Soybean phosphatidylcholine liposomes also induced hemolysis, and a lipid-soluble azo initiator incorporated into the soybean phosphatidylcholine liposomes accelerated the hemolysis. The chain-breaking antioxidants incorporated into the liposomes were also effective in suppressing this hemolysis.  相似文献   

8.
β-Carotene is thought to be a chain-breaking antioxidant, even though we have no information about the mechanism of its antioxidant activity. Using electron-spin resonance (ESR) spectroscopy coupled to the spin-trapping technique, we have studied the effect of β-carotene and lutein on the radical adducts of the spin-trap PBN (N-t -butyl-α-phenylnitrone) generated by the metal-ion breakdown of different tert -butyl hydroperoxide (t BOOH) concentrations in methylene chloride. The peroxyl radical, along with an oxidation product of PBN (the PBNOx), trapped at room temperature from the breakdown of high concentration of t BOOH (1 M), were quenched by β-carotene or lutein, in competition with the spin-trapping agent. However, carotenoids were not able to quench the alkoxyl and methyl radicals generated in the reaction carried out in the presence of low t BOOH concentration (1 mM). The reaction between carotenoids and the peroxyl radical was also carried out in the absence of the spin trap, at 77 K: Under these different experimental conditions, we did not detect any radical species deriving from carotenoids. In the same system, a further evidence of the peroxyl radical quenching by β-carotene and lutein was obtained. The antioxidant activity of vitamin E was also tested, for comparison with the carotenoids. In the presence of α-tocopherol, peroxyl and alkoxyl radicals were quenched, and the tocopheroxyl radical was detected. Our data provide the first direct evidence that carotenoids quench peroxyl radicals. Under our experimental conditions, we did not detect any carotenoid radical species that could derive from the interaction with the peroxyl radical. The radical-trapping activity of β-carotene and lutein demonstrated in this chemical reaction contributes to our understanding carotenoid antioxidant action in biological systems. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 299–304, 1998  相似文献   

9.
The oxidation of human low density lipoprotein (LDL) initiated by free radical initiator and its inhibition by vitamin E and water-soluble antioxidants have been studied. It was found that the kinetic chain length was considerably larger than 1, suggesting that LDL was oxidized by a free radical chain mechanism. Vitamin E acted as a lipophilic chain-breaking antioxidant. Water-soluble chain-breaking antioxidants such as ascorbic acid and uric acid suppressed the oxidation of LDL initiated by aqueous radicals but they could not scavenge lipophilic radicals within LDL to break the chain propagation. Ascorbic acid acted as a synergistic antioxidant in conjunction with vitamin E.  相似文献   

10.
Biological actions of carotenoids   总被引:10,自引:0,他引:10  
A Bendich  J A Olson 《FASEB journal》1989,3(8):1927-1932
Of 600 carotenoids from natural sources that have been characterized, fewer than 10% serve as precursors of vitamin A. Many dietary carotenoids, both with and without provitamin A activity, are found in the blood and tissues of humans. beta-Carotene, the most nutritionally active carotenoid, comprises 15-30% of total serum carotenoids. Vitamin A is formed primarily by the oxygen-dependent central cleavage of beta-carotene and other provitamin A carotenoids. Several carotenoids show enhancement of the immune response, inhibition of mutagenesis, reduction of induced nuclear damage, and protection from various neoplastic events in cells, tissues, and whole animals. Carotenoids also protect against photo-induced tissue damage. Some carotenoids, including beta-carotene, quench highly reactive singlet oxygen under certain conditions and can block free radical-mediated reactions. In epidemiological studies, the intake of carotenoid-rich fruits and vegetables has been correlated with protection from some forms of cancer, particularly lung cancer. Similarly, serum beta-carotene levels have been associated with a decreased chance of developing lung cancer. It must be stressed, however, that these epidemiological associations do not show cause and effect. In this regard, long-term intervention trials with beta-carotene supplements are in progress. Whatever the results of these trials, carotenoids clearly show biological actions in animals distinct from their function as precursors of vitamin A.  相似文献   

11.
In this paper, we report on a method to evaluate the activity of water soluble and H-atom donor antioxidants as peroxyl radical scavengers in a micelle system reproducing the conditions occurring in the upper small intestine in humans, during digestion and absorption of lipids. This method, which overcomes some of the problems of the total radical trapping antioxidant parameter (TRAP) assays, measures the peroxyl radical trapping capacity (n) and the peroxyl radical trapping efficiency IC50(-1) of antioxidants, that is the number "n" of peroxyl radicals trapped by one molecule of the studied antioxidant and the reciprocal of the antioxidant concentration that halves the steady-state concentration of peroxyl radicals, respectively. These two fundamental parameters characterizing the radical chain breaking of many water soluble antioxidants, among which dietary polyphenols, can be obtained with relatively good precision from a single experiment, on the basis of a rigorous treatment of the kinetic data.  相似文献   

12.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever alpha-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+ -dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox. When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+ /Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

13.
There is a body of evidences demonstrating, in biological systems, a cooperative interaction between tocopherols and carotenoids. FeAOX-6 is a novel antioxidant that combines the chroman head of alpha-tocopherol and a fragment of the isoprenyl chain of lycopene. We have tested its antioxidant effect on different radical species generated in a chemical system, where peroxyl, alkoxyl and methyl radicals are generated by the ferrous ion-mediated decomposition of tert-butyl hydroperoxide. We found that FeAOX-6 has the same effectiveness of alpha-tocopherol in quenching peroxyl radical with no contribution by lycopene. The antioxidant activity of FeAOX-6 on alkoxyl and methyl radicals is comparable to that of the equimolar mixture of the parent compounds. Lycopene is able to quench alkoxyl radical, while it has no effect on peroxyl radical, showing a different antioxidant activity compared to other carotenoids, such as beta-carotene and lutein.  相似文献   

14.
There is a body of evidences demonstrating, in biological systems, a cooperative interaction between tocopherols and carotenoids. FeAOX-6 is a novel antioxidant that combines the chroman head of α-tocopherol and a fragment of the isoprenyl chain of lycopene. We have tested its antioxidant effect on different radical species generated in a chemical system, where peroxyl, alkoxyl and methyl radicals are generated by the ferrous ion-mediated decomposition of tert-butyl hydroperoxide. We found that FeAOX-6 has the same effectiveness of α-tocopherol in quenching peroxyl radical with no contribution by lycopene. The antioxidant activity of FeAOX-6 on alkoxyl and methyl radicals is comparable to that of the equimolar mixture of the parent compounds. Lycopene is able to quench alkoxyl radical, while it has no effect on peroxyl radical, showing a different antioxidant activity compared to other carotenoids, such as β-carotene and lutein.  相似文献   

15.
Oxidative stress and the role of antioxidants are currently one of the most important subjects in the field of life science. In the present study, we assessed the oxidation of plasma lipids induced by free radicals and its inhibition by antioxidants with a fluorescence probe BODIPY. Vitamin E and C-depleted plasma was used to evaluate the inherent action of several antioxidants. BODIPY reacted with free radicals in plasma to emit fluorescence (ex. 510 nm, em. 520 nm), which was suppressed by the antioxidants in a concentration-dependent manner. However, the suppression of fluorescence emission by antioxidants did not always correlate quantitatively with the suppression of lipid peroxidation. For example, alpha-tocopherol suppressed BODIPY fluorescence but enhanced the peroxidation of plasma lipids in the absence of ascorbic acid. 2,2,5,7,8-Pentamethyl-6-chromanol, a vitamin E analogue without a phytyl side chain, almost completely suppressed both fluorescence emission and lipid peroxidation in the plasma. These results show that BODIPY can be used as a convenient probe for radical scavenging, but that care should be taken for the evaluation of antioxidant capacity.  相似文献   

16.
The effects of the carotenoids beta-carotene and astaxanthin on the peroxidation of liposomes induced by ADP and Fe(2+) were examined. Both compounds inhibited production of lipid peroxides, astaxanthin being about 2-fold more effective than beta-carotene. The difference in the modes of destruction of the conjugated polyene chain between beta-carotene and astaxanthin suggested that the conjugated polyene moiety and terminal ring moieties of the more potent astaxanthin trapped radicals in the membrane and both at the membrane surface and in the membrane, respectively, whereas only the conjugated polyene chain of beta-carotene was responsible for radical trapping near the membrane surface and in the interior of the membrane. The efficient antioxidant activity of astaxanthin is suggested to be due to the unique structure of the terminal ring moiety.  相似文献   

17.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever α-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+-dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox.

When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+/Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

18.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

19.
Consumption of carotenoids is associated with an enhanced immune response and protection against neoplasia and atherosclerosis. Because these effects have been achieved using carotenoids with no pro-vitamin A activity, they are assumed to be due to the antioxidant properties of carotenoids. Carotenoids protect against photosensitized oxidation by quenching singlet oxygen. In addition, beta-carotene reacts chemically with peroxyl radicals to produce epoxide and apocarotenal products. To investigate the potential significance of these reactions to biological systems, we have used soybean lipoxygenase to generate peroxyl radical enzymatically. beta-Carotene inhibits the oxidation of linoleic acid by soybean lipoxygenase as well as the formation of the hydroperoxide product. In addition, the absorption of beta-carotene is diminished (bleached) by soybean lipoxygenase. The potential significance of these antioxidant reactions of carotenoids to biological function is discussed.  相似文献   

20.
《Free radical research》2013,47(11):1406-1412
Abstract

Carotenoids act as physiological antioxidant by scavenging reactive-free radicals as well as quenching singlet oxygen. Fucoxanthin is one of the abundant carotenoids found in edible brown seaweeds. The assessment of radical scavenging capacity of carotenoids has been the subject of extensive studies, which, however, gave inconsistent results. In the present study, the capacity of fucoxanthin for scavenging peroxyl radicals, chain carrying species of lipid peroxidation, was assessed quantitatively by measuring the effect of α-tocopherol on the decay of fucoxanthin induced by peroxyl radicals. It was found that α-tocopherol was 7.1 times more reactive than fucoxanthin in heptane solution, but interestingly fucoxanthin exerted 1.6 times higher reactivity than α-tocopherol in methanol solution. In SDS micelles, the relative reactivity of fucoxanthin and α-tocopherol depended on the site of peroxyl radical formation. The efficacy of lipid peroxidation inhibition by fucoxanthin was much less than that of α-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号