首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies to the peptides that induce differentiation of midgut larval stem cells, the midgut differentiating factors MDF-2, MDF-3, and MDF-4, bind to columnar cells in midgut cultures and in intact midgut of Heliothis virescens, in manners similar to the binding of anti- MDF-1 to those tissues. Antibodies to MDF-2 and MDF-3 also stained droplets in the midgut lumen, suggesting that columnar cells may also release MDF-2- and MDF-3-like cytokines to the lumen. Antibody to MDF-4 exhibited similar staining patterns but also recognized stem and differentiating cells, the presumed targets of peptides that regulate stem cell differentiation. Antibody to MDF-4 also bound to one type of endocrine cell in midgut cultures and in sections of midgut, as well as to the endocrine secretion released both to the midgut lumen and the hemolymph. Antibodies to the MDFs 1, 2, and 3, incubated with cultures of midgut cells, did not appear to prevent differentiation of the stem cells in the cultures but affected viability of mature cells, reflected in increased apoptosis and doubling of the number of differentiating cells compared to controls. Only antibody to MDF-4 induced temporary necrosis and inhibition of population recovery, indicating that MDF4 may be the true differentiation factor. The other MDFs may have additional functions beyond regulation of midgut stem cell differentiation in vivo.  相似文献   

2.
《Journal of Asia》2019,22(3):982-989
The proliferation and differentiation of stem cell populations allow the midgut to grow/regenerate in lepidopteran insect. Basic epithelial regenerative functions can be assessed in vitro by purifying these stem and mature cell populations. Therefore, we isolated and purified stem and mature cells from the midgut of C. suppressalis larvae by density gradient centrifugation and observed the morphologies of these cells. A flow cytometry method was used to monitor C. suppressalis stem cell proliferation and differentiation under different cell culture conditions. We observed high proportions of the stem and differentiating cells in third- and fourth-instar larvae, respectively, indicating that, in larvae, stem cells rapidly proliferate early in development and are strongly differentiated at late stages. Incubation in medium supplemented with fat body extract and ecdysone resulted in a significantly increased proportion of stem cells, not of the differentiating cells, indicating that co-culture with fat body extract and ecdysone stimulates the proliferation of C. suppressalis stem cells. Viability bioassays showed that Cry1Ab displayed significant cytotoxic effects on the midgut cell culture of C. suppressalis. The proportion of differentiating cells was significantly increased after a 48-h exposure to sublethal doses of Cry1Ab toxin, and peaked at the Cry1Ab concentration of 0.3 μg/ml, demonstrating that epithelial cells with strong regenerative capacity via the differentiation of stem cells. These results improve our understanding of C. suppressalis stem cell biology and illustrate the potential role of the enhanced midgut regeneration induced by stem cell proliferation or differentiation as a reparation mechanism to Bt toxin.  相似文献   

3.
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors.  相似文献   

4.
Ion channels participate in cell homeostasis and are involved in the regulation of proliferation and differentiation in several cell types; however, their presence and function in embryonic stem (ES) cells are poorly studied. We have investigated the existence of voltage-dependent inward currents in mouse ES cells and their ability to modulate proliferation and self-renewal. Patch-clamped ES cells had inactivating tetrodotoxin (TTX)-sensitive Na(+) currents as well as transient Ca(2+) currents abolished by the external application of Ni(2+). Biophysical and pharmacological data indicated that the Ca(2+) current is predominantly mediated by T-type (Ca(v)3.2) channels. The number of cells expressing T-type channels and Ca(v)3.2 mRNA levels increased at the G1/S transition of the cell cycle. TTX had no effect on ES cell proliferation. However, blockade of T-type Ca(2+) currents with Ni(2+) induced a decrease in proliferation and alkaline phosphatase positive colonies as well as reduced expression of Oct3/4 and Nanog, all indicative of loss in self-renewal capacity. Decreased alkaline phosphatase and Oct3/4 expression were also observed in cells subjected to small interfering RNA-induced knockdown for T-type (Ca(v)3.2) Ca(2+) channels, thus partially recapitulating the pharmacological effects on self-renewal. These results indicate that Ca(v)3.2 channel expression in ES cells is modulated along the cell cycle being induced at late G1 phase. They also suggest that these channels are involved in the maintenance of the undifferentiated state of mouse ES cells. We propose that Ca(2+) entry mediated by Ca(v)3.2 channels might be one of the intracellular signals that participate in the complex network responsible for ES cell self-renewal.  相似文献   

5.
Baldwin KM  Hakim RS 《Tissue & cell》1991,23(3):411-422
The number of epithelial cells comprising larval midgut of the tobacco hornworm moth, Manduca sexta increases 200-fold in development from the first to the fifth instar. We have examined larvae periodically before and during molting to follow epithelial cell proliferation and differentiation. The midgut epithelium in Manduca sexta consists predominantly of columnar and goblet cells. These are arranged in a characteristic pattern with each goblet cell surrounded by a single layer of 4-6 columnar cells (Hakim et al., (1988)). While undifferentiated basal stem cells are infrequently seen in intermolt larvae, just prior to the period when external signs of molting are visible, their number increases and mitotic figures become common. Proliferation continues for several hours and then these stem cells differentiate following a pattern similar to that seen during embryogenesis (Hakim et al., (1988)). Here, however, the newly differentiating cells become intercalated among the mature differentiated cells already present in the epithelium. Since the pattern of individual goblet cells surrounded by a reticulum of columnar cells is maintained after the addition of new cells, the midgut epithelium of molting larvae appears to be a useful model for studying pattern formation in development.  相似文献   

6.
An increasing concentration of extracellular Ca2+ ([Ca2+]e) consistently induces epithelial differentiation, but its effect on proliferation remains variable. We investigated the effect of [Ca2+]e on two different cell populations: the peripheral corneal (PC) and limbal (L) epithelia, the latter containing corneal stem cells. Primary clonal (18 cells/cm2) cultures from rabbit limbal and peripheral corneal epithelia were established in serum-free MCDB 151 medium containing growth-promoting agents and 0.03, 0.3, or 1.8 mM Ca2+. During early culture life, colony size and the BrdU labelling-index of L and PC, assayed on day 6, increased in response to increasing [Ca2+]e; cell attachment and colony-forming efficiency remained unchanged for both L and PC epithelia. These results indicate that increasing [Ca2+]e, under these defined conditions, stimulates the proliferation of transient amplifying cells, but does not stimulate the differentiation of stem cells into clonal proliferation. A 10-fold increase of the seeding density or prolongation of the culture up to day 14 or 21 changed the response to [Ca2+]e allowing better proliferation in lower [Ca2+]e. Only cells grown as a monolayer in 0.03 mM Ca2+ could still be passaged on day 14, whereas cells in higher [Ca2+]e showed increasing stratification and cell detachment and could not be passaged. Normal cellular differentiation accessed by the expression of a cornea-type K3 keratin, recognized by the monoclonal antibody AE-5, was enhanced by increasing [Ca2+]e. Abnormal differentiation featured by the formation of cornified envelopes was only observed in higher [Ca2+]e. These results indicate that [Ca2+]e promotes the proliferation of relatively undifferentiated transient amplifying cells under clonal, serum-free culture conditions. Factors that enhance differentiation, such as seeding density or prolonged culture life, can modify this response and allow better proliferation in low [Ca2+]e.  相似文献   

7.
During pregnancy and lactation, prolactin (PRL) enhances intestinal absorption of calcium and other minerals for fetal development and milk production. Although an enhanced absorptive efficiency is believed to mainly result from the upregulation of mineral transporters in the absorptive villous cells, some other possibilities, such as PRL-enhanced crypt cell proliferation and differentiation to increase the absorptive area, have never been ruled out. Here, we investigated cell proliferation and mRNA expression of mineral absorption-related genes in the PRL-exposed IEC-6 crypt cells. As expected, the cell proliferation was not altered by PRL. Inasmuch as the mRNA expressions of villous cell markers, including dipeptidylpeptidase-4, lactase and glucose transporter-5, were not increased, PRL was not likely to enhance crypt cell differentiation into the absorptive villous cells. In contrast to the previous findings in villous cells, PRL was found to downregulate the expression of calbindin-D(9k), claudin-3 and occludin in IEC-6 crypt cells, while having no effect on transient receptor potential vanilloid family channels-5/6, plasma membrane Ca(2+)-ATPase (PMCA)-1b and Na(+)/Ca(2+) exchanger-1 expression. In conclusion, IEC-6 crypt cells did not respond to PRL by increasing proliferation or differentiation into villous cells. The present results thus supported the previous hypothesis that PRL enhanced mineral absorption predominantly by increasing transporter expression and activity in the absorptive villous cells.  相似文献   

8.
The Aedes aegypti midgut is restructured during metamorphosis; its epithelium is renewed by replacing the digestive and endocrine cells through stem or regenerative cell differentiation. Shortly after pupation (white pupae) begins, the larval digestive cells are histolized and show signs of degeneration, such as autophagic vacuoles and disintegrating microvilli. Simultaneously, differentiating cells derived from larval stem cells form an electron-dense layer that is visible 24 h after pupation begins. Forty-eight hours after pupation onset, the differentiating cells yield an electron-lucent cytoplasm rich in microvilli and organelles. Dividing stem cells were observed in the fourth instar larvae and during the first 24 h of pupation, which suggests that stem cells proliferate at the end of the larval period and during pupation. This study discusses various aspects of the changes during midgut remodeling for pupating A. aegypti.  相似文献   

9.
Summary Differentiated cells in the insect midgut depend on stem cells for renewal. We have immunologically identified Integrin β1, a promotor of cell-cell adhesion that also induces signals mediating proliferation, differentiation, and apoptosis on the surfaces of culturedHeliothis virescens midgut cells; clusters of immunostained integrin β1-like material, indicative of activated integrin, were detected on aggregating midgut columnar cells. Growth factor-like peptides (midgut differentiation factors 1 and 2 [MDF1 and MDF2]), isolated from conditioned medium containingManduca sexta midgut cells, may be representative of endogenous midgut signaling molecules. Exposing the cultured midgut cells toBacillus thuringiensis (Bt) toxin caused large numbers of mature differentiated cells to die, but the massive cell death simultaneously induced a 150–200% increase in the numbers of midgut stem and differentiating cells. However, after the toxin was washed out, the proportions of cell types returned to near-control levels within 2 d, indicating endogenous control of cell-population dynamics. MDF1 was detected immunologically in larger numbers of Bt-treated columnar cells than controls, confirming its role in inducing the differentiation of rapidly produced stem cells. However, other insect midgut factors regulating increased proliferation, differentiation, as well as inhibition of proliferation and adjustment of the ratio of cell types, remain to be discovered. Products mentioned in this article are not endorsed by the U.S. Department of Agriculture.  相似文献   

10.
Toxin from two strains of Bacillus thuringiensis (Bt), AA 1-9 and HD-73, caused dose-dependent destruction of cultured midgut cells from Heliothis virescens larvae. HD-73 toxin was more effective although, at the doses used, not all cells were killed. After 2 days of exposure to 0.8 pg/μl AA 1-9 or 0.06 pg/μl HD-73, columnar and goblet cell numbers declined to ca 20% of controls. In contrast, stem and differentiating cells increased to 140-200% of controls. The dynamic of depletion and replacement depended on toxin type and concentration. Two days after toxin was washed out, ratios of cell types returned to approximate control levels, suggesting rapid population corrections in vitro. Regulation of the ratio of cell types in each population, and the rate of proliferation and differentiation of stem cells was induced by the cultured midgut cells themselves. Controls and cells treated with toxin from Bt strain AA 1-9 were stained using a polyclonal antibody to Lepidopteran midgut differentiation factor 1 (MDF1). With Bt toxin, 1.5 times more cells stained for MDF1, suggesting increased synthesis of this differentiation factor during increased stem cell differentiation. The response of cultured midgut cells to Bt toxin injury is similar to injured vertebrate tissues dependent on stem cells for replacement and healing.  相似文献   

11.
A new tissue isolation technique was used to create intact midgut epithelial wholemounts from three Trichoplusia ni (Lepidoptera: Noctuidae) larval instars. The protease, dispase, removed the basal lamina and associated connective tissue and allowed for high resolution light microscopy of entire epithelia. Columnar, goblet, differentiating, and stem cells were characterized by double fluorescent labelling of f-actin and nuclei. A comparison of cell populations by digital image analysis revealed significant regional and temporal changes in the density and number of differentiating and stem cells. Growth of the midgut epithelium from third to fourth instar, and from fourth to fifth instar, was accomplished by both cell differentiation and cell division. Cell division however, was greatly reduced from fourth to fifth instar with a concomitant sharp decrease in the stem cell population.  相似文献   

12.
The features of the paracellular pathway, an important route for the transfer of ions and molecules in epithelia, are in insects still poorly investigated and it has not yet been elucidated how the septate junction (SJ) acts as a transepithelial barrier. In this study, some properties of the paracellular pathway of Bombyx mori larval midgut, isolated in Ussing chambers, were determined and the modulation of SJ permeability by intracellular events disclosed. Diffusion potentials evoked by transepithelial gradients of different salts indicated that the junction bore weak negative charges and that the paracellular pathway was selective with respect to ion charge and size. In standard conditions, the transepithelial resistance was 28.2+/-2.1 Omega cm(2), a value indicating that the midgut is a low resistance epithelium. The modulation of midgut SJ by typical enhancers of mammalian tight junction permeability known to act on the cytoskeleton was studied by measuring the shunt resistance and the lumen-to-haemolymph flux of sucrose. An increase of the intracellular level of cAMP and Ca(2+) caused a significant decrease of the shunt resistance and an increase of SJ permeability. The attenuation of Ca(2+) effect in the presence of the calcium channel blocker nifedipine indicated that the influx of external Ca(2+) into the cytoplasm was important for the opening of the SJ, as well as the release of Ca(2+) from the intracellular stores.  相似文献   

13.
Summary TheManduca sexta (L.) [Lepidoptera: Sphingidae] andHeliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. Mention of any product in this publication does not imply endorsement by the USDA.  相似文献   

14.
Summary The number of insect midgut cells is maintained homeostatically in vivo and in vitro. However, during starvation, the midgut shrinks and the rate of cell replacement appears to be suppressed. When they undergo metamorphosis, the internal organs of insects are drastically remodeled by cell proliferation, differentiation, and apoptotic processes, and the net number of cells usually increases. An extract of 1650 midguts ofPeriplaneta americana was fractionated by highperformance liquid chromatography (HPLC) to obtain the peptides that regulate these processes. The HPLC fractions were tested for myotropic activity in the foregut and for effects on cell proliferation or loss in primary cultures of larvalHeliothis virescens midgut cells and in a cell line derived from the last-instar larval fat body ofMamestra brassicae. Some fractions stimulated midgut stem cell proliferation and differentiation, while others caused loss of differentiated columnar and goblet cells. Other fractions stimulated cell proliferation in the larval fat body cells. Mention of products in this article does not imply endorsement by the U.S. Department of Agriculture.  相似文献   

15.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

16.
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.  相似文献   

17.
In the locomotor muscle of the pelagic tunicate Doliolum, both the sarcoplasmic reticulum (SR) and the transverse-tubular (T-tubular) system are absent. The mechanism of excitation-contraction (E-C) coupling was studied in single muscle fibres enzymatically dissociated from Doliolum denticulatum. Whole cell voltage clamp experiments demonstrated an inward ionic current associated with membrane depolarisation. This current was blocked by 5 mmol.l(-1)Co(2+), a calcium current blocker, and suppressed by nifedipine, a specific L-type calcium channel blocker. An increase in the external K(+) concentration to 200 mmol.l(-1) (K(+)-depolarisation) induced a rise in the intracellular Ca(2+) level detected with fluo-3, a Ca(2+)-sensitive dye. However, when 5-10 mmol.l(-1) Co(2+) or 10-15 micro mol.l(-1) nifedipine was present in the external solution, K(+)-depolarisation did not induce a rise in the intracellular Ca(2+) level. Externally applied 5-10 mmol.l(-1) caffeine or 20 micro mol.l(-1) ryanodine had no effect on the intracellular Ca(2+) level. K(+)-depolarisation induced a rise in the intracellular Ca(2+) level in the presence of caffeine or ryanodine. Replacement of external Na(+) with Li(+) increased intracellular Ca(2+) levels. Our results show that contraction of the locomotor muscle in Doliolum is solely due to the influx of Ca(2+) through L-type calcium channels, and that relaxation is due to extrusion of Ca(2+) by Na(+)/Ca(2+) exchange across the sarcolemma.  相似文献   

18.
19.
In quiescent Balb-c mouse 3T3 fibroblasts, the application of whole or dialyzed 10% foetal calf serum elicits a biphasic electrical response, consisting of a transient outward current, flowing through Ca(2+)-activated K+ channels, followed by an inward one, lasting up to 15 min. On the basis of experiments with ion substitutions and blockers, the inward current can be attributed to the opening of cationic channels permeable to Na+ and Ca2+ ions. This current could mediate the calcium influx involved in the sustained elevation of [Ca2+]i that has been observed in many preparations in response to mitogen stimulation and that is involved in triggering cell proliferation.  相似文献   

20.
Microfluorimetry and patch-clamp experiments were performed on TRPV6-expressing HEK cells to determine whether this Ca(2+)-sensing Ca(2+) channel is constitutively active. Intact cells loaded with fura-2 had an elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)), which decreased to the same level such as in non-transfected cells if external Ca(2+) was chelated by EGTA. Whole cell recordings from non-transfected HEK cells and cells expressing human TRPV6 revealed the presence of a basal inward current in both types of cells when the internal solution contained 0.1 mm EGTA and 100 nm [Ca(2+)](i) or if the cytosolic Ca(2+) buffering remained undisturbed in perforated patch-clamp experiments. If recombinantly expressed TRPV6 forms open channels, one would expect Ca(2+)-induced current inhibition, because TRPV6 is negatively regulated by internal Ca(2+). However, dialyzing solutions with high [Ca(2+)] such as 1 microm into TRPV6-expressing cells did not block the basal inward current, which was not different from the recordings from non-transfected cells. In contrast, dialyzing 0.5 mm EGTA into TRPV6-expressing cells readily activated Ca(2+) inward currents, which were undetectable in non-transfected cells. Interestingly, monovalent cations permeated the TRPV6 channels under conditions where no Ca(2+) permeation was detectable, indicating that divalent cations block TRPV6 channels from the extracellular side. Like human TRPV6, the truncated human TRPV6(Delta695-725), which lacks the C-terminal domain required for Ca(2+)-calmodulin binding, does not form constitutive active channels, whereas the human TRPV6(D542A), carrying a point mutation in the presumed pore region, does not function as a channel. In summary, no constitutive open TRPV6 channels were detected in patch-clamp experiments from transfected HEK cells. However, channel activity is highly regulated by intracellular and extracellular divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号