首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined action of rotenone and malonate, inhibitors of complexes I and II of the mitochondrial electron transport chain (ETC), on wheat cut-off root seedlings was studied after 6 h of incubation. Intensity of oxygen consumption and release of potassium ions into incubation medium were determined simultaneously with the study of changes in cell ultrastructure. Malonic acid was added 1 h after the root incubation in the rotenone solution and produced inhibition of respiration, as well as a greater release of K+ into the incubation solution as compared with effect of rotenone alone. After 2 h of the combined action of these inhibitors, many mitochondria acquired a toroidal shape, thereby increasing the outer surface. For the ensuing hours, stimulation of oxygen consumption by the roots and a decrease of K+ content in the incubation medium were observed. Mitochondria once again acquired a round or oval shape and compensation-reparation processes took place. Contacts of endoplasmic reticulum channels with mitochondria were observed, which seems to be due to the synthesis of the enzyme splitting malonate to acetyl-CoA, which in turn can be included both into the Krebs cycle and into lipogenesis. It is suggested that the toroidal form of mitochondria is associated with the activation of the external NAD(P)H-dehydrogenase of the inner mitochondrial membrane, as under these conditions, at the inhibition of the ETC complexes I and II, the activity of other dehydrogenises is blocked. Thus, the use of the external NAD(P)H allows the activity of the ETC mitochondria to be restored, which facilitates the course of the reparation processes and allows cells to be adapted to this action.  相似文献   

2.
Inside-out submitochondrial particles from both potato (Solanum tuberosum L. cv. Bintje) tubers and pea (Pisum sativum L. cv. Oregon) leaves possess three distinct dehydrogenase activities: Complex I catalyzes the rotenone-sensitive oxidation of deamino-NADH, NDin(NADPH) catalyzes the rotenone-insensitive and Ca2+-dependent oxidation of NADPH and NDin(NADH) catalyzes the rotenone-insensitive and Ca2+-independent oxidation of NADH. Diphenylene iodonium (DPI) inhibits complex I, NDin(NADPH) and NDin (NADH) activity with a Ki of 3.7, 0.17 and 63 µM, respectively, and the 400-fold difference in Ki between the two NDin made possible the use of DPI inhibition to estimate NDin (NADPH) contribution to malate oxidation by intact mitochondria. The oxidation of malate in the presence of rotenone by intact mitochondria from both species was inhibited by 5 µM DPI. The maximum decrease in rate was 10–20 nmol O2 mg?1 min?1. The reduction level of NAD(P) was manipulated by measuring malate oxidation in state 3 at pH 7.2 and 6.8 and in the presence and absence of an oxaloacetate-removing system. The inhibition by DPI was largest under conditions of high NAD(P) reduction. Control experiments showed that 125 µM DPI had no effect on the activities of malate dehydrogenase (with NADH or NADPH) or malic enzyme (with NAD+ or NADP+) in a matrix extract from either species. Malate dehydrogenase was unable to use NADP+ in the forward reaction. DPI at 125 µM did not have any effect on succinate oxidation by intact mitochondria of either species. We conclude that the inhibition caused by DPI in the presence of rotenone in plant mitochondria oxidizing malate is due to inhibition of NDin(NADPH) oxidizing NADPH. Thus, NADP turnover contributes to malate oxidation by plant mitochondria.  相似文献   

3.
Ca2+ uptake and the effect of the uptake inhibitors palmitoyl-CoA and palmitoylcarnitine were examined in two preparations of dog cardiac mitochondria. Mitochondria prepared by using the Nagarse technique was 2.5-fold more active in respiration-dependent Ca2+ uptake than were mitochondria isolated by using the Polytron procedure. Palmitoyl-CoA and palmitoylcarnitine inhibited Ca2+ uptake in both preparations uncompetitively, with Ki,app 0.4 and 20μm. Ca2+-uptake rates were related to, or influenced by, the concentration of mitochondrial reduced nicotinamide nucleotides, with uptake slowing as this concentration decreased. When most of the nicotinamide nucleotides was oxidized, Ca2+ release and respiratory stimulation were observed. In the presence of Ruthenium Red and palmitoyl-CoA, oxidation of nicotinamide nucleotides was abolished and the time to Ca2+ release was shortened corresponding to the time of onset of nicotinamide nucleotide oxidation in the absence of Ruthenium Red. The results suggest that NAD(P)H oxidation in the presence of rotenone was a consequence of Ca2+ re-uptake and that net Ca2+ release could be observed as reduced nicotinamide nucleotide concentrations declined. Although nicotinamide nucleotide oxidation occurred in the presence of rotenone, it was not linked in an apparent manner to acyl-group metabolism (palmitoylcarnitine was less effective than palmitoyl-CoA). Therefore either a by-pass of the rotenone block or a direct interaction of NAD(P)H with the Ca2+-uptake process was possible. Loss of NADH occurred before respiratory stimulation, and this loss may relate to decreased coupling efficiency at sites 2 and 3 of the respiratory chain, as suggested by others [Bhuvaneswaran & Wadkins (1978) Biochem. Biophys. Res. Commun. 82, 648–654].  相似文献   

4.
THE PENETRATION OF THE MEMBRANE OF BRAIN MITOCHONDRIA BY ANIONS   总被引:1,自引:0,他引:1  
The permeability of the membrane of rat brain non-synaptosomal mitochondria, towards inorganic and substrate anions, was assessed by measuring the rate of swelling that occurred when mitochondria were suspended in an iso-osmotic solution of a permeant anion, in the presence of a permeant cation such as NH+4 or K+ in the presence or absence of valinomycin. In NH+4-phosphate swelling was higher than it was in KCI or K+-phosphate, which showed the prevalence of the mechanism of phosphate transport previously demonstrated in liver mitochondria. The entry of succinate and L-malate seemed to require the presence in the inner mitochondrial membrane of specific carriers. as previously postulated for liver mitochondria, but the rate of swelling of brain mitochondria was lower than that of liver organelles. In K+-succinate, in the presence of antimycin, added ATP induced swelling and this was attributable to the simultaneous permeation both of the anion and the cation. Fumarate did not penetrate into brain mitochondria. Practically no swelling was recorded in NH+4 or K+-citrate, which indicated that this anion penetrated poorly into the isolated brain mitochondria even in the presence of malate. Swelling occurred in NH+4-L-glutamate in the presence of rotenone, and the entry of this anion seemed to follow a gradient of concentration although the presence of a specific translocator in the inner mitochondrial membrane might be concerned. The entry of glutamate was independent of that of phosphate and N-ethylmaleimide appeared to be a specific inhibitor of this entry. Swelling in K+-L-glutamate, in the presence of rotenone, was enhanced by the addition of valinomycin or ATP but in the latter case when osmotic equilibrium was reached swelling was not reversed by oligomycin. In conclusion, the lesser extent of swelling of isolated brain mitochondria compared with liver mitochondria could be attributed to the heterogeneity of the populations of these organelles, each population possessing its own characteristics of membrane permeability. Observations of electron micrographs of brain mitochondria incubated in iso-osmotic substrate anions confirmed the heterogeneous rate of swelling of these particles.  相似文献   

5.
In the presence of exogenous NAD+, malate oxidation by cauliflower mitochondria takes place essentially via an electron transport pathway that is insensitive to rotenone, antimycin and cyanide but is strongly sensitive to salicyl hydroxamic acid. It bypasses all phosphorylation sites. NAD+ is reduced by an enzyme identified as malic enzyme (L-malate:NAD oxidoreductase (decarboxylating), EC 1.1.1.39). The NADH produced is reoxidized by an internal rotenone-insensitive NADH dehydrogenase that yields electrons directly to the cyanide-insensitive pathway.  相似文献   

6.
The paper considers the effects of bedaquiline (BDQ), an antituberculous preparation of the new generation, on rat liver mitochondria. It was shown that 50?μM BDQ inhibited mitochondrial respiration measured with substrates of complexes I and II (glutamate/malate and succinate/rotenone systems respectively) in the states V3 and VDNP. At the same time, at concentrations below 50?μM, BDQ slightly stimulated respiration with substrates of complex I in the state V2. BDQ was also found to suppress, in a dose-dependent manner, the activity of complex II and the total activity of complexes II?+?III of the mitochondrial transport chain. It was discovered that at concentrations up to 10?μM, BDQ inhibited H2O2 production in mitochondria. BDQ (10–50?μM) suppressed the opening of Ca2+-dependent CsA-sensitive mitochondrial permeability transition pore. The latter was revealed experimentally as the inhibition of Ca2+/Pi-dependent swelling of mitochondria, suppression of cytochrome c release, and an increase in the Ca2+ capacity of the organelles. BDQ also decreased the rate of mitochondrial energy-dependent K+ transport, which was evaluated by the energy-dependent swelling of mitochondria in a K+ buffer and DNP-induced K+ efflux from the organelles. The possible mechanisms of BDQ effect of rat liver mitochondria are discussed.  相似文献   

7.
This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase??crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact??and alamethicin??permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca2+, (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca2+, (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca2+ and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.  相似文献   

8.
Conditions for activity of glutaminase in kidney mitochondria   总被引:7,自引:6,他引:1       下载免费PDF全文
1. Rat kidney mitochondria oxidize glutamate very slowly. Addition of glutamine stimulates this respiration two- to three-fold. Addition of glutamate also stimulates respiration in the presence of glutamine. 2. By measuring mitochondrial swelling in iso-osmotic solutions of glutamine or of ammonium glutamate it was shown that glutamine penetrates the mitochondrial membrane rapidly whereas ammonium glutamate penetrates very slowly. 3. Experiments in which reduction of NAD(P)+ was measured in preparations of intact and broken mitochondria indicated that glutamate dehydrogenase shows the phenomenon of `latency'. On the addition of glutamine rapid reduction of nicotinamide nucleotides in intact mitochondria was obtained. 4. During the action of glutaminase there is an accumulation of glutamate inside the mitochondria. 5. When the mitochondria were suspended in a medium containing glutamine, Pi and rotenone the rate of production of ammonia was stimulated by the addition of a substrate, e.g. succinate. Addition of an uncoupler or antimycin A abolished this stimulation. 6. The effects of succinate and uncoupler were especially pronounced in the presence of glutamate, which is an inhibitor of glutaminase activity by competition with Pi. 7. Determination of the enzyme activity in media at different pH values showed that the optimum pH for glutaminase activity in the preparation of broken mitochondria was 8, whereas for intact mitochondria it was dependent on the energy state. In the presence of succinate as an energy source it was pH 8.5, but in the presence of uncoupler or antimycin A it was 9. This displacement of the pH optimum to a higher value was especially pronounced in the presence of both glutamate and uncoupler. 8. If nigericin was present in potassium chloride medium the pH optimum for enzyme activity in intact non-respiring mitochondria was nearly the same as in the preparation of broken mitochondria; however, its presence in K+-free medium displaced the pH optimum for glutaminase activity to a very high value. 9. It is postulated that because of low permeability of the kidney mitochondrial membrane to glutamate the latter accumulates inside the mitochondria, and that this leads to the inhibition of the enzyme by competition with Pi and also by lowering the pH of the intramitochondrial space. With succinate as substrate for respiration there is an outward translocation of H+ ions, which together with accumulation of Pi increases glutaminase activity. Translocation of K+ ions inward increases the enzyme activity, perhaps by increasing the pH of the internal spaces and causing an accumulation of Pi. 10. The importance of the location of the enzyme in the mitochondria in relation to its biological function and conditions for activity is discussed.  相似文献   

9.
Using isolated chloroplasts or purified thylakoids from photoautotrophically grown cells of the chromophytic alga Pleurochloris meiringensis (Xanthophyceae) we were able to demonstrate a membrane bound NAD(P)H dehydrogenase activity. NAD(P)H oxidation was detectable with menadione, coenzyme Q0, decylplastoquinone and decylubiquinone as acceptors in an in vitro assay. K m-values for both pyridine nucleotides were in the molar range (K m[NADH]=9.8 M, K m[NADPH]=3.2 M calculated according to Lineweaver-Burk). NADH oxidation was optimal at pH 9 while pH dependence of NADPH oxidation showed a main peak at 9.8 and a smaller optimum at pH 7.5–8. NADH oxidation could be completely inhibited with rotenone, an inhibitor of mitochondrial complex I dehydrogenase, while NADPH oxidation revealed the typical inhibition pattern upon addition of oxidized pyridine nucleotides reported for ferredoxin: NADP+ reductase. Partly-denaturing gel electrophoresis followed by NAD(P)H dehydrogenase activity staining showed that NADPH and NADH oxidizing proteins had different electrophoretic mobilities. As revealed by denaturing electrophoresis, the NADH oxidizing enzyme had one main subunit of 22 kDa and two further polypeptides of 29 and 44 kDa, whereas separation of the NADPH depending protein yielded five bands of different molecular weight. Measurement of oxygen consumption due to PS I mediated methylviologen reduction upon complete inhibition of PS II showed that the NAD(P)H dehydrogenase is able to catalyze an input of electrons from NADH to the photosynthetic electron transport chain in case of an oxidized plastoquinone-pool. We suggest ferredoxin: NADP+ reductase to be the main NADPH oxidizing activity while a thylakoidal NAD(P)H: plastoquinone oxidoreductase involved in the chlororespiratory pathway in the dark acts mainly as an NADH oxidizing enzyme.Abbreviations Coenzyme Q0-2,3-dimethoxy-5-methyl-1,4-benzoquinone - FNR ferredoxin: NADP+ reductase - MD menadione - MV methylviologen - NDH NAD(P)H dehydrogenase - PQ plastoquinone - PQ10 decylplastoquinone - SDH succinate dehydrogenase - UQ10 decylubiquinone (2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone)  相似文献   

10.
Glutamine transport into rat brain mitochondria (synaptic and non-synaptic) was monitored by the uptake of [3H]glutamine as well as by mitochondrial swelling. The uptake is inversely correlated to medium osmolarity, temperature-dependent, saturable and inhibited by mersalyl, and glutamine is upconcentrated in the mitochondria. These results indicate that glutamine is transported into an osmotically active space by a protein catalyzed mechanism. The uptake is slightly higher in synaptic mitochondria than in non-synaptic ones. It is inhibited both by rotenone and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone, the latter at pH 6.5, showing that the transport is activated by an electrochemical proton gradient. The K+/H+ ionophore nigericin also inhibits the uptake at pH 6.5 in the presence of external K+, which indicates that glutamine, at least in part, is taken up by a proton symport transporter. In addition, glutamine uptake as measured by the swelling technique revealed an additional glutamine transport activity with at least 10 times higher Km value. This uptake is inhibited by valinomycin in the presence of K+ and is thus also activated by the membrane potential. Otherwise, the two methods show similar results. These data indicate that glutamine transport in brain mitochondria cannot be described by merely a simple electroneutral uniport mechanism, but are consistent with the uptake of both the anionic and the zwitterionic glutamine.  相似文献   

11.
High fat diets are extensively associated with health complications within the spectrum of the metabolic syndrome. Some of the most prevalent of these pathologies, often observed early in the development of high-fat dietary complications, are non-alcoholic fatty liver diseases. Mitochondrial bioenergetics and redox state changes are also widely associated with alterations within the metabolic syndrome. We investigated the mitochondrial effects of a high fat diet leading to non-alcoholic fatty liver disease in mice. We found that the diet does not substantially alter respiratory rates, ADP/O ratios or membrane potentials of isolated liver mitochondria. However, H2O2 release using different substrates and ATP-sensitive K+ transport activities are increased in mitochondria from animals on high fat diets. The increase in H2O2 release rates was observed with different respiratory substrates and was not altered by modulators of mitochondrial ATP-sensitive K+ channels, indicating it was not related to an observed increase in K+ transport. Altogether, we demonstrate that mitochondria from animals with diet-induced steatosis do not present significant bioenergetic changes, but display altered ion transport and increased oxidant generation. This is the first evidence, to our knowledge, that ATP-sensitive K+ transport in mitochondria can be modulated by diet.  相似文献   

12.
Increases in extracellular potassium concentration ([K+]o), which can occur during neuronal activity and under pathological conditions such as ischemia, lead to a variety of potentially detrimental effects on neuronal function. Although astrocytes are known to contribute to the clearance of excess K+o, the mechanisms are not fully understood. We examined the potential role of mitochondria in sequestering K+ in astrocytes. Astrocytes were loaded with the fluorescent K+ indicator PBFI and release of K+ from mitochondria into the cytoplasm was examined after uncoupling the mitochondrial membrane potential with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Under the experimental conditions employed, transient applications of elevated [K+]o led to increases in K+ within mitochondria, as assessed by increases in the magnitudes of cytoplasmic [K+] ([K+]i) transients evoked by brief exposures to CCCP. When mitochondrial K+ sequestration was impaired by prolonged application of CCCP, there was a robust increase in [K+]i upon exposure to elevated [K+]o. Blockade of plasmalemmal K+ uptake routes by ouabain, Ba2+, or a mixture of voltage-activated K+ channel inhibitors reduced K+ uptake into mitochondria. Also, reductions in mitochondrial K+ uptake occurred in the presence of mito-KATP channel inhibitors. Rises in [K+]i evoked by brief applications of CCCP following exposure to high [K+]o were also reduced by gap junction blockers and in astrocytes isolated from connexin43-null mice, suggesting that connexins also play a role in K+ uptake into astrocyte mitochondria. We conclude that mitochondria play a key role in K+o handling by astrocytes.  相似文献   

13.
The present work reports changes in bioenergetic parameters and mitochondrial activities during the manifestation of two events of programmed cell death (PCD), linked to Abies alba somatic embryogenesis. PCD, evidenced by in situ nuclear DNA fragmentation (TUNEL assay), DNA laddering and cytochrome c release, was decreased in maturing embryogenic tissue with respect to the proliferation stage. In addition, the major cellular energetic metabolites (ATP, NAD(P)H and glucose-6-phosphate) were highered during maturation. The main mitochondrial activities changed during two developmental stages. Mitochondria, isolated from maturing, with respect to proliferating cell masses, showed an increased activity of the alternative oxidase, external NADH dehydrogenase and fatty-acid mediated uncoupling. Conversely, a significant decrease of the mitochondrial KATP+ channel activity was observed. These results suggest a correlation between mitochondrial activities and the manifestation of PCD during the development of somatic embryos. In particular, it is suggested that the KATP+ channel activity could induce an entry of K+ into the matrix, followed by swelling and a release of cytochrome c during proliferation, whereas the alternative pathways, acting as anti-apoptotic factors, may partially counteract PCD events occurring during maturation of somatic embryos.  相似文献   

14.
It has been shown that treatment of the rat brain cortex synaptosomes with glutamate produced both a significant reduction in Na+,K+-ATPase activity and accumulation of products of lipid peroxidation (LPO) like malone dialdehyde, dienoic conjugates, and Schiff bases. A suppression of different routes of free radical production in cytosol by quinacrine, indomethacin, and allopurinol (blockers of phospholipase A2, cyclooxygenases, and xanthine oxidases, respectively) as well as by MK-801 (a antagonist of MDA-receptors) prevented or lowered significantly the effect of glutamate on Na+,K+-ATPase activity. No significant effect of glutamate on the Na+,K+-ATPase activity was also observed in the presence of L-NAME (inhibitor of NO-synthase). Inhibitors of the arachidonate and NO-synthase pathway of free radical production also prevented accumulation of LPO end products in the rat brain cortex under the effect of glutamate. In the presence of rotenone and olygomycin (blockers of mitochondrial electron transport and ATP synthase, respectively), glutamate led to even a greater inactivation of Na+,K+-ATPase and accumulation of malone dialdehyde. The data obtained suggest that at early stages of ischemia the neurotoxic effect of glutamate is due to an inflow of calcium ions through NMDA receptors and activation of different pathways of free radical production in cytosol of nerve cells. At these stages, protective functions of mitochondria appear to predominate due to their ability to accumulate calcium ions and to prevent an excessive increase of the cytosol calcium concentration under the effect of excitatory amino acids.  相似文献   

15.
The influence of the KATP+-channel opener diazoxide on the K+ cycle and oxygen consumption has been studied in rat liver mitochondria. It was found that diazoxide activates the KATP+-channel in the range of nanomolar concentrations (50–300 nM, K 1/2 ∼ 140 nM), which results in activation of K+/H+ exchange in mitochondria. The latter, in turn, accelerates mitochondrial respiration in respiratory state 2. The contribution of KATP+-channel to the mitochondrial potassium cycle was estimated using the selective KATP+-channel blocker glibenclamide. The data show that the relative contribution of KATP+-channel in the potassium cycle of mitochondria is variable and increases only with the decrease in the ATP-independent component of K+ uptake. Possible mechanisms underlying the observed phenomena are discussed. The experimental results more fully elucidate the role of KATP+-channel in the regulation of mitochondrial functions, especially under pathological conditions accompanied by impairment of the mitochondrial energy state.  相似文献   

16.
The effects of added NAD on substrate oxidation by turnip (Brassica rapa L.) and beetroot (Beta vulgaris L.) mitochondria were investigated. State 3 malate and 2-oxoglutarate oxidation rates with turnip mitochondria were stimulated 25 to 40% by external NAD. Following NAD-depletion this stimulation by NAD was increased to 70 to 80%. With purified beetroot mitochondria, state 3 malate and 2-oxoglutarate oxidation rates were only marginally increased (10-15%) by the addition of NAD but after NAD-depletion treatments this stimulation increased to 55%. The effect of added NAD on oxidation rates could be reduced by preloading mitochondria with NAD in the presence of succinate. Oxidation rates were found to be most sensitive to the addition of external NAD when rotenone was present. The uptake of external NAD into beetroot mitochondria appeared to be composed of both an active and a diffusive component. The active component displayed saturation kinetics with an approximate Km of 0.105 ± 0.046 millimolar. These results provide further evidence, reported previously with potato mitochondria, that NAD can move across the inner membrane of plant mitochondria. They are particularly significant with respect to beetroot mitochondria which in contrast to other plant mitochondria, have not demonstrated any response to added NAD.  相似文献   

17.
Isocitrate dehydrogenase (IDH) activities were measured in mitochondria isolated from aerial parts of 21-day-old spruce (Picea abies L. Karst.) seedlings. Mitochondria were purified by two methods, involving continuous and discontinuous Percoll gradients. Whatever the method of purification, the mitochondrial outer membrane was about 69% intact, and the mitochondria contained very low cytosolic, chloroplastic and peroxisomal contaminations. Nevertheless, as judged by the recovery of fumarase activity, purification on a continuous 28% Percoll gradient gave the best yield in mitochondria, which exhibited a high degree of inner membrane intactness (91%). The purified mitochondria oxidized succinate and malate with good respiratory control and ADP/O ratios. The highest oxidation rate was obtained with succinate as substrate, and malate oxidation was improved (+ 60%) by addition of exogenous NAD+. Experiments using standard respiratory chain inhibitors indicated that, in spruce mitochondria, the alternative pathway was present. Both NAD+-isocitrate dehydrogenase (EC 1.1.1.41) and NADP+-isocitrate dehydrogenase (EC 1.1.1.42) were present in the mitochondrial matrix fraction, and NAD+-IDH activity was about 2-fold higher than NADP+-IDH activity. The NAD+-IDH showed sigmoidal kinetics in response to isocitrate and standard Michaelis-Menten kinetics for NAD+ and Mg2+. The NADP+-IDH, in contrast, displayed lower Km values. For NAD+-IDH the pH optimum was at 7.4, whereas NADP+-IDH exhibited a broad pH optimum between 8.3 and 9. In addition, NAD+-IDH was more thermolabile. Adenine nucleotides and 2-oxoglutarate were found to inhibit NAD(P)+-IDH activities only at high concentrations.  相似文献   

18.
In the presence of oligomycin ADP inhibits the osmotic swelling of the nonenergized rat liver mitochondria in the NH4NO3 medium. With the energized mitochondria ADP enhances contraction of the mitochondria swollen in the NH4NO3 medium. Carboxyatractyloside and atractyloside abolish or prevent the effects of ADP. The direct measurements of the proton conductance of rat liver mitochondria shows that the inhibitory action of ADP + oligomycin on the H+ permeability does not depend on the energization of mitochondria. In these experiments the local anesthetic nupercaine and ADP additively inhibit the inner membrane conductance for protons, but carboxyatractyloside abolishes only the effect of ADP. In the presence of oligomycin ADP also inhibits the osmotic swelling of the nonenergized liver mitochondria in the KNO3 medium, and the energy-dependent swelling of rat liver mitochondria in the medium with K+ ions and Pi. The inhibition by ADP of the membrane passive permeability for K+ is also sensitive to carboxyatractyloside. It is concluded that rat liver mitochondria possess an ADP-regulated channel for H+ and K+. The properties of this pathway for protons and potassium ions favor the idea that ADP regulates the mitochondrial permeability via adenine nucleotide translocase. It is assumed that the adenine nucleotides carrier should operate according to the “gated pore” mechanism.  相似文献   

19.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   

20.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号