首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
T Shimizu  M Hatano  Y Muto  Y Nozawa 《FEBS letters》1984,166(2):373-377
We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.  相似文献   

2.
S100b is a calcium-binding protein that will bind to many calmodulin target molecules in a Ca2+-dependent manner. In order to study the Ca2+-dependent binding properties of S100b, its interaction with a calmodulin antagonist, trifluoperazine (TFP), was investigated using [19F]- and [1H]-NMR and UV-difference spectroscopy. It was estimated from [19F]-NMR that in the absence of Ca2+, thek 1/2 value of TFP was 130 µM, while itsk 1/2 value decreased to 28 µM in the presence of Ca2+. The addition of KCl was not antagonistic to the Ca2+-dependent interaction of TFP to S100b. The chemical exchange rate of TFP with Ca2+-bound S100b was estimated to be 9×102 sec–1. By comparison with TFP-calmodulin exchange rates, it is suggested that the TFP-binding site on S100b is structurally different from its binding sites on calmodulin. Proton NMR resonance broadening in the range 6.8–7.2 ppm, corresponding to phenylalanine nuclei of S100b, indicates that these residues may be involved in TFP binding. Addition of Ca2+ to a 1:1 mixture of S100b and TFP resulted in a red-shifted UV-difference spectrum, while no significant difference spectrum was detected when Mg2+ was added to a S100b-TFP solution. Thus, we suggest that Ca2+ induces the exposure of a hydrophobic domain on S100b containing one or more phenylalanine residues that will bind TFP but that this domain is different from the hydrophobic domain on calmodulin.  相似文献   

3.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

4.
43Ca NMR spectroscopy of Ca2+-thermolysin complexes reveals that the structure and/or exchange rate of Ca2+ bound to the regulative-site of the enzyme are not essentially changed by adding Zn2+ or an inhibitor, L-leucine hydroxamate, both of which may be bound to the active-site of the enzyme. It is shown that the chemical exchange mechanism dominates the 43Ca NMR of Ca2+ bound to the enzyme on the basis of temperature-dependences of the NMR. In contrast with the 43Ca NMR findings, first application of 67Zn NMR to the Zn2+-thermolysin complexes offers convincing evidences that the structure and/or exchange rate of Zn2+ bound to the active-site of the enzyme are remarkably changed by adding Ca2+ or the inhibitor, L-leucine hydroxamate.  相似文献   

5.
S100b is a calcium-binding protein that will bind to many calmodulin target molecules in a Ca2+-dependent manner. In order to study the Ca2+-dependent binding properties of S100b, its interaction with a calmodulin antagonist, trifluoperazine (TFP), was investigated using [19F]- and [1H]-NMR and UV-difference spectroscopy. It was estimated from [19F]-NMR that in the absence of Ca2+, thek 1/2 value of TFP was 130 µM, while itsk 1/2 value decreased to 28 µM in the presence of Ca2+. The addition of KCl was not antagonistic to the Ca2+-dependent interaction of TFP to S100b. The chemical exchange rate of TFP with Ca2+-bound S100b was estimated to be 9×102 sec?1. By comparison with TFP-calmodulin exchange rates, it is suggested that the TFP-binding site on S100b is structurally different from its binding sites on calmodulin. Proton NMR resonance broadening in the range 6.8–7.2 ppm, corresponding to phenylalanine nuclei of S100b, indicates that these residues may be involved in TFP binding. Addition of Ca2+ to a 1:1 mixture of S100b and TFP resulted in a red-shifted UV-difference spectrum, while no significant difference spectrum was detected when Mg2+ was added to a S100b-TFP solution. Thus, we suggest that Ca2+ induces the exposure of a hydrophobic domain on S100b containing one or more phenylalanine residues that will bind TFP but that this domain is different from the hydrophobic domain on calmodulin.  相似文献   

6.
43Ca NMR experiments of Ca2+ binding to calmodulin (CaM) were performed in the presence and absence of the calmodulin antagonist trifluoperazine (TFP). By making use of the shift reagent Dy(PPP)(7-) (a 1:2 complex of DyCl3 and Na5P3O10) we have succeeded in separating the 43Ca resonances of protein-bound Ca2+ and free Ca2+ in the otherwise unresolved spectra. This experimental strategy has allowed us to demonstrate unequivocally that the affinity of CaM for Ca2+ is markedly increased in the presence of TFP. Thus Ca2+ is not liberated from the protein upon addition of TFP as had been suggested based on earlier 43Ca NMR experiments (Shimuzu, T., Hatano, M., Nagao, S. and Nozawa, Y. (1982), Biochem. Biophys. Res. Comm. 106, 1112-1118).  相似文献   

7.
S100a is a heterodimeric, acidic calcium-binding protein that interacts with calmodulin antagonists in a Ca2+-dependent manner. In order to study the behavior of the hydrophobic domain on S100a when bound to Ca2+, its interaction with trifluoperazine (TFP) was investigated using16F nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The dissociation constant (K d) values of TFP, as estimated from the chemical shifts of19F NMR, were 191 and 29 m in the absence and presence of Ca2+, respectively, and were similar to those previously reported for S100b. However, the TFP linewidth in the presence of Ca2+-bound S100a was 65 Hz greater than in the presence of Ca2+-bound S100b. This suggests a slower TFP exchange rate for S100a than for S100b. Thus, the TFP linewidths observed for each isoform may reflect differences in structural and modulatory properties of the Ca2+-dependent hydrophobic domains on S100a and S100b. Additionally, the presence of magnesium had no effect on the observed Ca2+-induced TFP spectral changes in S100a solutions. Circular dichroism studies indicate that Ca2+ induces a small transition from -helix to random coil in S100a; in contrast, the opposite transition is reported for calmodulin (Hennesseyet al., 1987). However, TFP did not significantly alter the secondary structure of Ca2+-bound S100a; this observation is similar to the effect of TFP on Ca2+-bound calmodulin and troponin C (Shimizu and Hatano, 1984; Gariépy and Hodges, 1983). It is, therefore, proposed that TFP binds to a hydrophobic domain on S100a in a fashion similar to other calcium-modulated proteins.  相似文献   

8.
Trifluoperazine (TFP; Stelazine?) is an antagonist of calmodulin (CaM), an essential regulator of calcium‐dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, and 1LIN) show TFP bound to (Ca2+)4‐CaM in ratios of 1, 2, or 4 TFP per CaM. In all of these, CaM domains adopt the “open” conformation seen in CaM‐kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca2+)4‐CaM and explore differential effects on the N‐ and C‐domains of CaM, stoichiometric TFP titrations of CaM were monitored by 15N‐HSQC NMR. Two TFP bound to apo CaM, whereas four bound to (Ca2+)4‐CaM. In both cases, the preferred site was in the C‐domain. During the titrations, biphasic responses for some resonances suggested intersite interactions. TFP‐binding sites in apo CaM appeared distinct from those in (Ca2+)4‐CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ‐motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N‐domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the “closed,” “semi‐open,” and “open” domains of CaM. In physiological processes, apo CaM, as well as (Ca2+)4‐CaM, needs to be considered a potential target of drug action. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

10.
S100a is a heterodimeric, acidic calcium-binding protein that interacts with calmodulin antagonists in a Ca2+-dependent manner. In order to study the behavior of the hydrophobic domain on S100a when bound to Ca2+, its interaction with trifluoperazine (TFP) was investigated using16F nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The dissociation constant (K d) values of TFP, as estimated from the chemical shifts of19F NMR, were 191 and 29 μm in the absence and presence of Ca2+, respectively, and were similar to those previously reported for S100b. However, the TFP linewidth in the presence of Ca2+-bound S100a was 65 Hz greater than in the presence of Ca2+-bound S100b. This suggests a slower TFP exchange rate for S100a than for S100b. Thus, the TFP linewidths observed for each isoform may reflect differences in structural and modulatory properties of the Ca2+-dependent hydrophobic domains on S100a and S100b. Additionally, the presence of magnesium had no effect on the observed Ca2+-induced TFP spectral changes in S100a solutions. Circular dichroism studies indicate that Ca2+ induces a small transition from α-helix to random coil in S100a; in contrast, the opposite transition is reported for calmodulin (Hennesseyet al., 1987). However, TFP did not significantly alter the secondary structure of Ca2+-bound S100a; this observation is similar to the effect of TFP on Ca2+-bound calmodulin and troponin C (Shimizu and Hatano, 1984; Gariépy and Hodges, 1983). It is, therefore, proposed that TFP binds to a hydrophobic domain on S100a in a fashion similar to other calcium-modulated proteins.  相似文献   

11.
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.  相似文献   

12.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

13.
The Ca2+-activated Cl channel anoctamin-1 (Ano1; Tmem16A) plays a variety of physiological roles, including epithelial fluid secretion. Ano1 is activated by increases in intracellular Ca2+, but there is uncertainty whether Ca2+ binds directly to Ano1 or whether phosphorylation or additional Ca2+-binding subunits like calmodulin (CaM) are required. Here we show that CaM is not necessary for activation of Ano1 by Ca2+ for the following reasons. (a) Exogenous CaM has no effect on Ano1 currents in inside-out excised patches. (b) Overexpression of Ca2+-insensitive mutants of CaM have no effect on Ano1 currents, whereas they eliminate the current mediated by the small-conductance Ca2+-activated K+ (SK2) channel. (c) Ano1 does not coimmunoprecipitate with CaM, whereas SK2 does. Furthermore, Ano1 binds very weakly to CaM in pull-down assays. (d) Ano1 is activated in excised patches by low concentrations of Ba2+, which does not activate CaM. In addition, we conclude that reversible phosphorylation/dephosphorylation is not required for current activation by Ca2+ because the current can be repeatedly activated in excised patches in the absence of ATP or other high-energy compounds. Although Ano1 is blocked by the CaM inhibitor trifluoperazine (TFP), we propose that TFP inhibits the channel in a CaM-independent manner because TFP does not inhibit Ano1 when applied to the cytoplasmic side of excised patches. These experiments lead us to conclude that CaM is not required for activation of Ano1 by Ca2+. Although CaM is not required for channel opening by Ca2+, work of other investigators suggests that CaM may have effects in modulating the biophysical properties of the channel.  相似文献   

14.
The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of Ca2+-ATPase present in the plasma membrane, the outer acrosome membrane and the outer mitochondrion membrane resulting in Ca2+ accumulation in the cytoplasm, which in turn blocks further Ca2+ entry through some negative feedback mechanism(s). The inhibitory effect of Ca2+-ATPase antagonist on glycolytic activity may also be the reason for Ca2+ accumulation in cytoplasm and inhibition of Ca2+ uptake.  相似文献   

15.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

16.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

17.
The biological environment in which a protein performs its function is a crowded milieu containing millions of molecules that can potentially lead to a great many transient, non-specific interactions. NMR spectroscopy is especially well suited to study these weak molecular contacts. Here, non-specific interactions between the Ca2+-bound form of calmodulin (CaM) and non-cognate proteins in Escherichia coli lysate are explored using Ile, Leu, Val and Met methyl probes. Changes in CaM methyl chemical shifts as a function of added E. coli lysate are measured to determine a minimum ‘average’ dissociation constant for interactions between Ca2+-CaM and E. coli lysate proteins. 2H R 2 and 13C R 1 spin relaxation rates report on the binding reaction as well. Our results further highlight the power of methyl containing side-chains for characterizing biomolecular interactions, even in complex in-cell like environments.  相似文献   

18.
Membrane skeletal protein 4.1R80 plays a key role in regulation of erythrocyte plasticity. Protein 4.1R80 interactions with transmembrane proteins, such as glycophorin C (GPC), are regulated by Ca2+-saturated calmodulin (Ca2+/CaM) through simultaneous binding to a short peptide (pep11; A264KKLWKVCVEHHTFFRL) and a serine residue (Ser185), both located in the N-terminal 30 kDa FERM domain of 4.1R80 (H·R30). We have previously demonstrated that CaM binding to H·R30 is Ca2+-independent and that CaM binding to H·R30 is responsible for the maintenance of H·R30 β-sheet structure. However, the mechanisms responsible for the regulation of CaM binding to H·R30 are still unknown. To investigate this, we took advantage of similarities and differences in the structure of Coracle, the Drosophila sp. homologue of human 4.1R80, i.e. conservation of the pep11 sequence but substitution of the Ser185 residue with an alanine residue. We show that the H·R30 homologue domain of Coracle, Cor30, also binds to CaM in a Ca2+-independent manner and that the Ca2+/CaM complex does not affect Cor30 binding to the transmembrane protein GPC. We also document that both H·R30 and Cor30 bind to phosphatidylinositol-4,5 bisphosphate (PIP2) and other phospholipid species and that that PIP2 inhibits Ca2+-free CaM but not Ca2+-saturated CaM binding to Cor30. We conclude that PIP2 may play an important role as a modulator of apo-CaM binding to 4.1R80 throughout evolution.  相似文献   

19.
20.
3-O-Methylfluorescein phosphate hydrolysis, catalyzed by purified erythrocyte Ca2+-ATPase in the absence of Ca2+, was slow in the basal state, activated by phosphatidylserine and controlled proteolysis, but not by calmodulin. p-Nitrophenyl phosphate competitively inhibits hydrolysis in the absence of Ca2+, while ATP inhibits it with a complex kinetics showing a high and a low affinity site for ATP. Labeling with fluorescein isothiocyanate impairs the high affinity binding of ATP, but does not appreciably modify the binding of any of the pseudosubstrates. In the presence of calmodulin, an increase in the Ca2+ concentration produces a bell-shaped curve with a maximum at 50 μM Ca2+. At optimal Ca2+ concentration, hydrolysis of 3-O-methylfluorescein phosphate proceeds in the presence of fluorescein isothiocyanate, is competitively inhibited by p-nitrophenyl phosphate and, in contrast to the result observed in the absence of Ca2+, it is activated by calmodulin. In marked contrast with other pseudosubstrates, hydrolysis of 3-O-methylfluorescein phosphate supports Ca2+ transport. This highly specific activity can be used as a continuous fluorescent marker or as a tool to evaluate partial steps from the reaction cycle of plasma membrane Ca2+-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号