首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
In the cross between Drosophila melanogaster females and D. simulans males, hybrid males die at the late larval stage, and the sibling females also die at later stages at high temperatures. Removing the D. simulans allele of the Lethal hybrid rescue gene (Lhr sim ) improves the hybrid incompatibility phenotypes. However, the loss-of-function mutation of Lhr sim (Lhr sim0 ) does not rescue the hybrid males in crosses with several D. melanogaster strains. We first describe the genetic factor possessed by the D. melanogaster strains. It has been suggested that removing the D. melanogaster allele of Lhr (Lhr mel ), that is Lhr mel0 , does not have the hybrid male rescue effect, contrasting to Lhr sim0 . Because the expression level of the Lhr gene is known to be Lhr sim  > Lhr mel in the hybrid, Lhr mel0 may not lead to enough of a reduction in total Lhr expression. Then, there is a possibility that the D. melanogaster factor changes the expression level to Lhr sim  < Lhr mel . But in fact, the expression level was Lhr sim  > Lhr mel in the hybrid irrespectively of the presence of the factor. At last, we showed that Lhr mel0 slightly improves the viability of hybrid females, which was not realized previously. All of the present results are consistent with the allelic asymmetry model of the Lhr gene expression in the hybrid.  相似文献   

3.
Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethality of Nup160, however, is genetically complex, depending on one or more unknown additional factors in the autosomal background. Here we study the genetics and evolution of Nup160-mediated hybrid lethality in three ways. First, we test for variability in Nup160-mediated hybrid lethality within and among the three species of the D. simulans clade— D. simulans, D. sechellia, and D. mauritiana. We show that the hybrid lethality of Nup160 is fixed in D. simulans and D. sechellia but absent in D. mauritiana. Second, we explore how the hybrid lethality of Nup160 depends on other loci in the autosomal background. We find that D. simulans Nup160-mediated hybrid lethality does not depend on the presence of D. melanogaster Nup96, and we find that D. simulans and D. mauritiana are functionally differentiated at Nup160 as well as at other autosomal factor(s). Finally, we use population genetics data to show that Nup160 has experienced histories of recurrent positive selection both before and after the split of the three D. simulans clade species ∼240,000 years ago. Our genetic results suggest that a hybrid lethal Nup160 allele evolved before the split of the three D. simulans clade species, whereas the other autosomal factor(s) evolved more recently.  相似文献   

4.

Background  

Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene.  相似文献   

5.
The Dobzhansky–Muller model posits that intrinsic postzygotic reproductive isolation—the sterility or lethality of species hybrids—results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hybrid incompatibility that evolves between two species, however, depends on the particular evolutionary history of the causative substitutions. An allele that is functionally derived in one species can be incompatible with an allele that is functionally derived in the other species (a derived-derived hybrid incompatibility). But an allele that is functionally derived in one species can also be incompatible with an allele that has retained the ancestral state in the other species (a derived-ancestral hybrid incompatibility). The relative abundance of such derived-derived vs. derived-ancestral hybrid incompatibilities is unknown. Here, we characterize the genetics and evolutionary history of a lethal hybrid incompatibility between Drosophila mauritiana and its two sibling species, D. sechellia and D. simulans. We show that a hybrid lethality factor(s) in the pericentric heterochromatin of the D. mauritiana X chromosome, hybrid lethal on the X (hlx), is incompatible with a factor(s) in the same small autosomal region from both D. sechellia and D. simulans, Suppressor of hlx [Su(hlx)]. By combining genetic and phylogenetic information, we infer that hlx-Su(hlx) hybrid lethality is likely caused by a derived-ancestral incompatibility, a hypothesis that can be tested directly when the genes are identified.  相似文献   

6.
Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr) gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past—at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.  相似文献   

7.
Interspecific hybrid lethality and sterility are a consequence of divergent evolution between species and serve to maintain the discrete identities of species. The evolution of hybrid incompatibilities has been described in widely accepted models by Dobzhansky and Muller where lineage-specific functional divergence is the essential characteristic of hybrid incompatibility genes. Experimentally tractable models are required to identify and test candidate hybrid incompatibility genes. Several Drosophila melanogaster genes involved in hybrid incompatibility have been identified but none has yet been shown to have functionally diverged in accordance with the Dobzhansky-Muller model. By introducing transgenic copies of the X-linked Hybrid male rescue (Hmr) gene into D. melanogaster from its sibling species D. simulans and D. mauritiana, we demonstrate that Hmr has functionally diverged to cause F1 hybrid incompatibility between these species. Consistent with the Dobzhansky-Muller model, we find that Hmr has diverged extensively in the D. melanogaster lineage, but we also find extensive divergence in the sibling-species lineage. Together, these findings implicate over 13% of the amino acids encoded by Hmr as candidates for causing hybrid incompatibility. The exceptional level of divergence at Hmr cannot be explained by neutral processes because we use phylogenetic methods and population genetic analyses to show that the elevated amino-acid divergence in both lineages is due to positive selection in the distant past—at least one million generations ago. Our findings suggest that multiple substitutions driven by natural selection may be a general phenomenon required to generate hybrid incompatibility alleles.  相似文献   

8.
9.
10.
We have been analyzing genes for reproductive isolation by replacing Drosophila melanogaster genes with homologs from Drosophila simulans by interspecific backcrossing. Among the introgressions established, we found that a segment of the left arm of chromosome 2, Int(2L)S, carried recessive genes for hybrid sterility and inviability. That nuclear pore protein 160 (Nup160) in the introgression region is involved in hybrid inviability, as suggested by others, was confirmed by the present analysis. Male hybrids carrying an X chromosome of D. melanogaster were not rescued by the Lethal hybrid rescue (Lhr) mutation when the D. simulans Nup160 allele was made homozygous or hemizygous. Furthermore, we uniquely found that Nup160 is also responsible for hybrid sterility. Females were sterile when D. simulans Nup160 was made homozygous or hemizygous in the D. melanogaster genetic background. Genetic analyses indicated that the D. simulans Nup160 introgression into D. melanogaster was sufficient to cause female sterility but that other autosomal genes of D. simulans were also necessary to cause lethality. The involvement of Nup160 in hybrid inviability and female sterility was confirmed by transgene experiment.INVESTIGATING the genetic bases of reproductive isolation is important for understanding speciation (Sawamura and Tomaru 2002; Coyne and Orr 2004; Wu and Ting 2004; Noor and Feder 2006; Presgraves 2010). In fact, continued interest in this issue has led to the isolation of several genes that are responsible for hybrid sterility and inviability in Drosophila (Ting et al. 1998; Barbash et al. 2003; Presgraves et al. 2003; Brideau et al. 2006; Masly et al. 2006; Phadnis and Orr 2009; Prigent et al. 2009; Tang and Presgraves 2009). Drosophila melanogaster and Drosophila simulans are the best pair for such genetic analyses (Sturtevant 1920). Hybrid male lethality in the cross between D. melanogaster females and D. simulans males is caused by incompatibility involving chromatin-binding proteins (Barbash et al. 2003; Brideau et al. 2006), and hybrid female lethality in the reciprocal cross is caused by incompatibility between a maternally supplied factor and a repetitive satellite DNA (Sawamura et al. 1993a; Sawamura and Yamamoto 1997; Ferree and Barbash 2009). Furthermore, individuals with the genotype equivalent to the backcrossed generation exhibit different incompatibilities (Pontecorvo 1943; Presgraves 2003), two components of which have been identified (Presgraves et al. 2003; Tang and Presgraves 2009). Because of the discovery of rescuing mutations that prevent hybrid inviability and sterility (Watanabe 1979; Hutter and Ashburner 1987; Sawamura et al. 1993a,b; Davis et al. 1996; Barbash and Ashburner 2003), chromosome segments from D. simulans can be introgressed into the D. melanogaster genome (Sawamura et al. 2000; Masly et al. 2006). For example, introgression of the D. simulans chromosome 4 or Y into D. melanogaster results in male sterility (Muller and Pontecorvo 1940; Orr 1992), and the recessive sterility by the chromosome 4 introgression is attributed to an interspecific gene transposition between chromosomes (Masly et al. 2006).The other successful introgressions of this type are the tip and the middle regions of the left arm of chromosome 2, Int(2L)D and Int(2L)S, respectively (Sawamura et al. 2000). Both female and male Int(2L)S homozygotes are sterile (Figure 1A), and the recessive sterility genes have been mapped with recombination and complementation assays against deficiencies. The male sterility genes are polygenic and interact epistatically with each other (Sawamura and Yamamoto 2004; Sawamura et al. 2004b), but the female sterility gene has been mapped to a 170-kb region containing only 20 open reading frames (ORFs) (Sawamura et al. 2004a). Interestingly, Int(2L)S also carries a recessive lethal gene whose effect is detected only in a specific genotype (Figure 1B). Lethality in hybrid males from the cross between D. melanogaster females and D. simulans males is rescued by the Lethal hybrid rescue (Lhr) mutation in D. simulans (Watanabe 1979), but the hybrid males cannot be rescued if they carry the introgression, presumably because of incompatibility between an X-linked gene(s) of D. melanogaster and a homozygous D. simulans gene in the Int(2L)S region (Sawamura 2000). Because the female sterility gene and the lethal gene were not separated by recombination, Sawamura et al. (2004a) suggested that female sterility and lethality may be a consequence of the pleiotropic effects of a single gene.Open in a separate windowFigure 1.—Viability and fertility of flies with various genotypes. (A) Females and males that are heterozygous or homozygous for the D. simulans introgression Int(2L)S (Int) in the D. melanogaster genetic background. (B) Four genotypic classes from the cross between introgression heterozygote [Int(2L)S/CyO] females and D. simulans Lethal hybrid rescue (Lhr) males. (C) Four genotypic classes from the cross between D. melanogaster females with a deficiency (Df) [Df(2L)/CyO] and D. simulans Lhr males. Open chromosome regions are from D. melanogaster, and shaded ones are from D. simulans.Because the hybrid lethal gene on Int(2L)S is recessive, the gene can be mapped by deficiencies instead of using introgression (Figure 1C) (Sawamura 2000; Sawamura et al. 2004a). In fact, hybrid males carrying a deficiency encompassing this region (hemizygous for the D. simulans genes) and the D. melanogaster X chromosome are lethal even if they carry the hybrid rescue mutation (see also Presgraves 2003). Tang and Presgraves (2009) subsequently narrowed down this region with multiple deficiencies and identified the hybrid lethal gene with a complementation test and transformation. We confirmed their conclusion and report our data here. In the transformation experiment, we used the natural promoter of the gene, instead of overexpressing the gene (Tang and Presgraves 2009), and we directly indicated, for the first time, that the hybrid lethal gene is also responsible for the female sterility of introgression homozygotes. The D. simulans allele of the gene seems to be nonfunctional on the genetic background of D. melanogaster. Moreover, our results indicated that this gene and chromosome X of D. melanogaster are not sufficient to explain the inviability and that another autosomal gene(s) in D. simulans is required.  相似文献   

11.
The gene Hybrid male rescue (Hmr) causes lethality in interspecific hybrids between Drosophila melanogaster and its sibling species. Hmr has functionally diverged for this interspecific phenotype because lethality is caused specifically by D. melanogaster Hmr but not by D. simulans or D. mauritiana Hmr. Hmr was identified by the D. melanogaster partial loss-of-function allele Hmr1, which suppresses hybrid lethality but has no apparent phenotype within pure-species D. melanogaster. Here we have investigated the possible function of Hmr in D. melanogaster females using stronger mutant alleles. Females homozygous for Hmr mutants have reduced viability posteclosion and significantly reduced fertility. We find that reduced fertility of Hmr mutants is caused by a reduction in the number of eggs laid as well as reduced zygotic viability. Cytological analysis reveals that ovarioles from Hmr mutant females express markers that distinguish various stages of wild-type oogenesis, but that developing egg chambers fail to migrate posteriorly. D. simulans and D. mauritiana Hmr+ partially complement the reduced fertility of a D. melanogaster Hmr mutation. This partial complementation contrasts with the complete functional divergence previously observed for the interspecific hybrid lethality phenotype. We also investigate here the molecular basis of hybrid rescue associated with a second D. melanogaster hybrid rescue allele, In(1)AB. We show that In(1)AB is mutant for Hmr function, likely due to a missense mutation in an evolutionarily conserved amino acid. Two independently discovered hybrid rescue mutations are therefore allelic.  相似文献   

12.
Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.  相似文献   

13.
The Drosophila simulans Lhr rescues lethal hybrids from the cross of D. melanogaster and D. simulans. We describe here, the phenotypes of Lhr dependent rescue hybrids and demonstrate the effects of Lhr on functional morphology of the salivary chromosomes in the hybrids. Our results reveal that the phenotypes of the ‘Lhr dependent rescued’ hybrids were largely dependent on the genetic background and the dominance in species and hybrids, and not on Lhr. Cytological examination reveal that while the salivary chromosome of ‘larval lethal’ male carrying melanogaster X chromosome was unusually thin and contracted, in ‘rescued’ hybrid males (C mel X mel Y sim ; A mel A sim ) the X chromosome showed typical pale staining, enlarged diameter and incorporated higher rate of 3H-uridine in presence of one dose Lhr in the genome. In hybrid males carrying simulans X chromosome (C mel X sim Y mel ; A mel A sim ), enlarged width of the polytene X chromosome was noted in most of the nuclei, in Lhr background, and transcribed at higher rate than that of the single X chromosome of male. In hybrid females (both viable, e.g., C mel X mel X sim ; A mel A sim and rescued, e.g., C mel X mel X mel ; A mel A sim ), the functional morphology of the X chromosomes were comparable to that of diploid autosomes in presence of one dose of Lhr. In hybrid metafemales, (C mel X mel X mel X sim ; A mel A sim ), two dose of melanogaster X chromosomes and one dose of simulans X chromosome were transcribed almost at ‘female’ rate in hybrid genetic background in presence of one dose of Lhr. In rescued hybrid males, the melanogaster-derived X chromosome appeared to complete its replication faster than autosomes. These results together have been interpreted to have suggested that Lhr suppresses the lethality of hybrids by regulating functional activities of the X chromosome(s) for dosage compensation.  相似文献   

14.
The study of hybrid inviability reveals cryptic divergence between the genetic interactions that maintain stable phenotypes in the pure species . We characterized the effects of natural variation on the penetrance of hybrid inviability phenotypes in crosses between Drosophila melanogaster and two species of the D. simulans subcomplex, D. simulans and D. sechellia. Using a panel of wild‐caught lines, we studied the levels of genetic variance present in D. simulans and D. sechellia affecting prezygotic and post‐zygotic isolation in hybridizations with D. melanogaster females. We observed extensive variability in the viability of hybrid individuals, dependent on the genotype of the parents, suggesting that intraspecific natural variation manifests directly in hybrid phenotypes. Furthermore, we found that genetic background significantly affects the penetrance of a well‐studied determinant of hybrid inviability: the interaction between Hmrmel–Lhrsim. Our results suggest that hybrid inviability – and reproductive isolation generally – can be modified by polymorphisms at multiple loci segregating within the parental species. Just as the penetrance of most mutant phenotypes can be modified by the genetic background within the pure species, the penetrance of hybrid inviability phenotypes is highly influenced by the parental genotypes.  相似文献   

15.
The population genetic perspective is that the processes shaping genomic variation can be revealed only through simultaneous investigation of sequence polymorphism and divergence within and between closely related species. Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D. melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome. We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution. Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and functional variation in D. simulans.  相似文献   

16.
Copy number variations (CNVs) represent a large source of genetic variation in humans and have been increasingly studied for disease association. A deletion polymorphism of the gene encoding the cytosolic detoxification enzyme glutathione S-transferase theta 1 (GSTT1) has been extensively studied for cancer susceptibility (919 studies, from HuGE navigator, http://www.hugenavigator.net/). However, clear conclusions have not been reached. Since the GSTT1 gene is located within a genomic region of segmental duplications (SD), there may be a confounding effect from another, yet-uncharacterized CNV at the same locus. Here we describe a previously uncharacterized 38-kilo-base (kb) long deletion polymorphism of GSTT2B located within a 61-kb DNA inverted repeat. GSTT2B is a duplicated copy of GSTT2, the only paralogue of GSTT1 in humans. A newly developed PCR assay revealed that a microhomology-mediated breakpoint appears to be shared among individuals at high frequency. The GSTT2B deletion polymorphism was in strong linkage disequilibrium (LD) (D′ = 0.841) with the neighboring GSTT1 deletion polymorphism in the Caucasian population. Alleles harboring a single deletion were significantly overrepresented (p = 2.22×10−16), suggesting a selection against alleles with both deletions. The deletion alleles are almost certainly the derived ones, because the GSTT2B-GSTT2-GSTT1 genes were strictly retained in chimpanzees. Extremely low GSTT2 mRNA expression was associated with the GSTT2B deletion, suggesting an influence of the deletion on the flanking region and loss of GSTT2 function. Genome-wide LD analysis between deletion polymorphisms further points to the uniqueness of two deletions, because strong LD between deletion polymorphisms might be very rare in humans. These results show a complex genomic organization and unexpected biological functions of CNVs within segmental duplications and emphasize the importance of detailed structural characterization for disease association studies.  相似文献   

17.

Background

With the advance of next generation sequencing (NGS) technologies, a large number of insertion and deletion (indel) variants have been identified in human populations. Despite much research into variant calling, it has been found that a non-negligible proportion of the identified indel variants might be false positives due to sequencing errors, artifacts caused by ambiguous alignments, and annotation errors.

Results

In this paper, we examine indel redundancy in dbSNP, one of the central databases for indel variants, and develop a standalone computational pipeline, dubbed Vindel, to detect redundant indels. The pipeline first applies indel position information to form candidate redundant groups, then performs indel mutations to the reference genome to generate corresponding indel variant substrings. Finally the indel variant substrings in the same candidate redundant groups are compared in a pairwise fashion to identify redundant indels. We applied our pipeline to check for redundancy in the human indels in dbSNP. Our pipeline identified approximately 8% redundancy in insertion type indels, 12% in deletion type indels, and overall 10% for insertions and deletions combined. These numbers are largely consistent across all human autosomes. We also investigated indel size distribution and adjacent indel distance distribution for a better understanding of the mechanisms generating indel variants.

Conclusions

Vindel, a simple yet effective computational pipeline, can be used to check whether a set of indels are redundant with respect to those already in the database of interest such as NCBI’s dbSNP. Of the approximately 5.9 million indels we examined, nearly 0.6 million are redundant, revealing a serious limitation in the current indel annotation. Statistics results prove the consistency of the pipeline on indel redundancy detection for all 22 chromosomes. Apart from the standalone Vindel pipeline, the indel redundancy check algorithm is also implemented in the web server http://bioinformatics.cs.vt.edu/zhanglab/indelRedundant.php.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0359-1) contains supplementary material, which is available to authorized users.  相似文献   

18.
Crosses betweenDrosophila melanogaster females andD. simulans males produce viable hybrid females, while males are lethal. These males are rescued if they carry theD. simulans Lhr gene. This paper reports that females of the wild-typeD. melanogaster population Staket do not produce viable hybrid males when crossed withD. simulans Lhr males, a phenomenon which we designate as the Staket phenotype. The agent responsible for this phenomenon was found to be the StaketX chromosome (X mel ,Stk). Analysis of the Staket phenotype showed that it is suppressed by extra copies ofD. melanogaster rDNA genes and that theX mel ,Stk chromosome manifests a weak bobbed phenotype inD. melanogaster X mel ,Stk/0 males. The numbers of functional rDNA genes inX mel ,Stk andX mel ,y w (control) chromosomes were found not to differ significantly. Thus a reduction in rDNA gene number cannot account for the weak bobbedX mel ,Stk phenotype let alone the Staket phenotype. The rRNA precursor molecules transcribed from theX mel ,Stk rDNA genes seem to be correctly processed in both intraspecific (melanogaster) and interspecific (melanogaster-simulans) conditions. It is therefore suggested that theX mel ,Stk rDNA genes are inefficiently transcribed in themelanogaster-simulans hybrids.  相似文献   

19.
Mutations in sarcomeric genes are common genetic cause of cardiomyopathies. An intronic 25-bp deletion in cardiac myosin binding protein C (MYBPC3) at 3 region is associated with dilated and hypertrophic cardiomyopathies in Southeast Asia. However, the frequency of sarcomeric gene polymorphisms and associated clinical presentation have not been established with left ventricular dysfunction (LVD). Therefore, the aim of the present study was to explore the association of MYBPC3 25-bp deletion, titin (TTN) 18 bp I/D , troponin T type 2 (TNNT2) 5 bp I/D and myospryn K2906N polymorphisms with LVD. This study includes 988 consecutive patients with angiographically confirmed coronary artery disease (CAD) and 300 healthy controls. Among the 988 CAD patients, 253 with reduced left ventricle ejection fraction (LVEF ≤ 45%) were categorized as LVD. MYBPC3 25-bp deletion, TTN 18 bp I/D and TNNT2 5 bp I/D polymorphisms were determined by direct polymerase chain reaction method, while myospryn K2906N polymorphism by TaqMan assay. Our results showed that MYBPC3 25-bp deletion polymorphism was significantly associated with elevated risk of LVD (LVEF <45) (healthy controls versus LVD: OR = 3.85, P< 0.001; and nonLVD versus LVD: OR = 1.65, P = 0.035), while TTN 18 bp I/D , TNNT2 5 bp I/D and myospryn K2906N polymorphisms did not show any significant association with LVD. The results also showed that MYBPC3 25-bp deletion polymorphism was significantly associated with other parameters of LV remodelling, i.e. LV dimensions (LV end diastole dimension, LVEDD: P = 0.037 and LV end systolic dimension, LVESD: P = 0.032). Our data suggests that MYBPC3 25-bp deletion may play significant role in conferring LVD as well as CAD risk in north Indian population.  相似文献   

20.
Detailed studies of individual genes have shown that gene expression divergence often results from adaptive evolution of regulatory sequence. Genome-wide analyses, however, have yet to unite patterns of gene expression with polymorphism and divergence to infer population genetic mechanisms underlying expression evolution. Here, we combined genomic expression data—analyzed in a phylogenetic context—with whole genome light-shotgun sequence data from six Drosophila simulans lines and reference sequences from D. melanogaster and D. yakuba. These data allowed us to use molecular population genetics to test for neutral versus adaptive gene expression divergence on a genomic scale. We identified recent and recurrent adaptive evolution along the D. simulans lineage by contrasting sequence polymorphism within D. simulans to divergence from D. melanogaster and D. yakuba. Genes that evolved higher levels of expression in D. simulans have experienced adaptive evolution of the associated 3′ flanking and amino acid sequence. Concomitantly, these genes are also decelerating in their rates of protein evolution, which is in agreement with the finding that highly expressed genes evolve slowly. Interestingly, adaptive evolution in 5′ cis-regulatory regions did not correspond strongly with expression evolution. Our results provide a genomic view of the intimate link between selection acting on a phenotype and associated genic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号