首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptotagmins constitute a large protein family, characterized by one transmembrane region and two C2 domains, and can be classified into several subclasses based on phylogenetic relationships and biochemical activities (Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Synaptotagmin I (Syt I), a possible Ca(2+) sensor for neurotransmitter release, showed both Ca(2+)-dependent (via the C2 domain) and -independent (via the NH(2)-terminal domain) self-oligomerization, which are thought to be important for synaptic vesicle exocytosis. However, little is known about the relationship between these two interactions and the Ca(2+)-dependent oligomerization properties of other synaptotagmin isoforms. In this study, we first examined the Ca(2+)-dependent self-oligomerization properties of synaptotagmin family by co-expression of T7- and FLAG-tagged Syts (full-length or cytoplasmic domain) in COS-7 cells. We found that Syt VII is a unique class of synaptotagmins that only showed robust Ca(2+)-dependent self-oligomerization at the cytoplasmic domain with EC(50) values of about 150 micrometer Ca(2+). In addition, Syt VII preferentially interacted with the previously described subclass of Syts (V, VI, and X) in a Ca(2+)-dependent manner. Co-expression of full-length and cytoplasmic portion of Syts VII (or II) indicate that Syt VII cytoplasmic domain oligomerizes in a Ca(2+)-dependent manner without being tethered at the NH(2)-terminal domain, whereas Ca(2+)-dependent self-oligomerization at the cytoplasmic domain of other isoforms (e.g. Syt II) occurs only when the two molecules are tethered at the NH(2)-terminal domain.  相似文献   

2.
Synaptotagmin I (Syt I), a proposed major Ca(2+) sensor in the central nervous system, has been hypothesized as functioning in an oligomerized state during neurotransmitter release. We previously showed that Syts I, II, VII, and VIII form a stable SDS-resistant, beta-mercaptoethanol-insensitive, and Ca(2+)-independent oligomer surrounding the transmembrane domain (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the molecular mechanism of the Ca(2+)-independent oligomerization by the synaptotagmin family. In this study, we analyzed the Ca(2+)-independent oligomerization properties of Syt I and found that it shows two distinct forms of self-oligomerization activity: stable SDS-resistant self-oligomerization activity and relatively unstable SDS-sensitive self-oligomerization activity. The former was found to be mediated by a post-translationally modified (i.e. fatty-acylated) cysteine (Cys) cluster (Cys-74, Cys-75, Cys-77, Cys-79, and Cys-82) at the interface between the transmembrane and spacer domains of Syt I. We also show that the number of Cys residues at the interface between the transmembrane and spacer domains determines the SDS- resistant oligomerizing capacity of each synaptotagmin isoform: Syt II, which contains seven Cys residues, showed the strongest SDS-resistant oligomerizing activity in the synaptotagmin family, whereas Syt XII, which has no Cys residues, did not form any SDS-resistant oligomers. The latter SDS-sensitive self-oligomerization of Syt I is mediated by the spacer domain, because deletion of the whole spacer domain, including the Cys cluster, abolished it, whereas a Syt I(CA) mutant carrying Cys to Ala substitutions still exhibited self-oligomerization. Based on these results, we propose that the oligomerization of the synaptotagmin family is regulated by two distinct mechanisms: the stable SDS-resistant oligomerization is mediated by the modified Cys cluster, whereas the relatively unstable (SDS-sensitive) oligomerization is mediated by the environment of the spacer domain.  相似文献   

3.
The Ca(2+)-dependent oligomerization activity of the second C2 (C2B) domain of synaptotagmin I (Syt I) has been hypothesized to regulate neurotransmitter release. We previously showed that the cytoplasmic domains of several other Syt isoforms also show Ca(2+)-dependent oligomerization activity (Fukuda, M., and Mikoshiba, K. (2000) J. Biol. Chem. 275, 28180-28185), but little is known about the involvement of their C2 domains in Ca(2+)-dependent oligomerization. In this study, we analyzed the Ca(2+)-dependent oligomerization properties of the first (C2A) and the second C2 (C2B) domains of Syt VII. Unlike Syt I, both C2 domains of Syt VII contribute to Ca(2+)-dependent homo- and hetero-oligomerization with other isoforms. For instance, the Syt VII C2A domain Ca(2+)-dependently binds itself and the C2A domain of Syt VI but not its C2B domain, whereas the Syt VII C2B domain Ca(2+)-dependently binds itself and the C2B domain of Syt II but not its C2A domain. In addition, we showed by gel filtration that a single Syt VII C2 domain is sufficient to form a Ca(2+)-dependent multimer of very high molecular weight. Because of this "two handed" structure, the Syt VII cytoplasmic domain has been found to show the strongest Ca(2+)-dependent multimerization activity in the Syt family. We also identified Asn-328 in the C2B domain as a crucial residue for the efficient Ca(2+)-dependent switch for multimerization by site-directed mutagenesis. Our results suggest that Syt VII is a specific isoform that can cluster different Syt isoforms with two hands in response to Ca(2+).  相似文献   

4.
The synaptotagmins now constitute a large family of membrane proteins characterized by one transmembrane region and two C2 domains. Dimerization of synaptotagmin (Syt) I, a putative low affinity Ca(2+) sensor for neurotransmitter release, is thought to be important for expression of function during exocytosis of synaptic vesicles. However, little is known about the self-dimerization properties of other isoforms. In this study, we demonstrate that a subclass of synaptotagmins (III, V, VI, and X) (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273) forms beta-mercaptoethanol-sensitive homodimers and identify three evolutionarily conserved cysteine residues at the N terminus (N-terminal cysteine motif, at amino acids 10, 21, and 33 of mouse Syt III) that are not conserved in other isoforms. Site-directed mutagenesis of these cysteine residues and co-immunoprecipitation experiments clearly indicate that the first cysteine residue is essential for the stable homodimer formation of Syt III, V, or VI, and heterodimer formation between Syts III, V, VI, and X. We also show that native Syt III from mouse brain forms a beta-mercaptoethanol-sensitive homodimer. Our results suggest that the cysteine-based heterodimerization between Syt III and Syt V, VI, or X, which have different biochemical properties, may modulate the proposed function of Syt III as a putative high affinity Ca(2+) sensor for neurotransmitter release.  相似文献   

5.
Synaptotagmin VII (Syt VII), a proposed regulator for Ca2+-dependent exocytosis, showed a robust Ca2+-dependent oligomerization property via its two C2 domains (Fukuda, M., and Mikoshiba, K. (2001) J. Biol. Chem. 276, 27670-27676), but little is known about its structure or the critical residues directly involved in the oligomerization interface. In this study, site-directed mutagenesis and chimeric analysis between Syt I and Syt VII showed that three Asp residues in Ca2+-binding loop 1 or 3 (Asp-172, Asp-303, and Asp-357) are crucial to robust Ca(2+)-dependent oligomerization. Unlike Syt I, however, the polybasic sequence in the beta4 strands of the C2 structures (so-called "C2 effector domain") is not involved in the Ca2+-dependent oligomerization of Syt VII. The results also showed that the Ca2+-binding loops of the two C2 domains cooperatively mediate Syt VII oligomerization (i.e. the presence of redundant Ca2+-binding site(s)) as well as the importance of Ca2+-dependent oligomerization of Syt VII in Ca2+-regulated secretion. Expression of wild-type tandem C2 domains of Syt VII in PC12 cells inhibited Ca2+-dependent neuropeptide Y release, whereas mutant fragments lacking Ca2+-dependent oligomerization activity had no effect. Finally, rotary-shadowing electron microscopy showed that the Ca2+-dependent oligomer of Syt VII is "a large linear structure," not an irregular aggregate. By contrast, in the absence of Ca2+ Syt VII molecules were observed to form a globular structure. Based on these results, we suggest that the linear Ca2+-dependent oligomer may be aligned at the fusion site between vesicles and plasma membrane and modulate Ca2+-regulated exocytosis by opening or dilating fusion pores.  相似文献   

6.
Synaptotagmins (Syts) III, V, VI, and X are classified as a subclass of Syt, based on their sequence similarities and biochemical properties (Ibata, K., Fukuda, M., and Mikoshiba, K. (1998) J. Biol. Chem. 273, 12267-12273; Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). Although they have been suggested to be involved in vesicular trafficking, as in the role of the Syt I isoform in synaptic vesicle exocytosis, their exact functions remain to be clarified, and even their precise subcellular localization is still a matter of controversy. In this study, we established rat pheochromocytoma (PC12) cell lines that stably express Syts III-, V-, VI-, and X-GFP (green fluorescence protein) fusion proteins, respectively, to determine their precise subcellular localizations. Surprisingly, Syts III-, V-, VI-, and X-GFP proteins were found to be targeted to specific organelles: Syt III-GFP to near the plasma membrane, Syt V-GFP to dense-core vesicles, Syt VI-GFP to endoplasmic reticulum-like structures, and Syt X-GFP to vesicles (other than dense-core vesicles) present in cytoplasm. We showed that Syt V-containing vesicles at the neurites of PC12 cells were processed to exocytosis in a Ca2+-dependent manner. Immunohistochemical analysis further showed that endogenous Syt V was also localized on dense-core vesicles in the mouse brain and specifically expressed in glucagon-positive alpha-cells in mouse pancreatic islets, but not in beta- or delta-cells. Based on these results, we propose that Syt V is a dense-core vesicle-specific Syt isoform that controls a specific type of Ca2+-regulated secretion.  相似文献   

7.
Synaptotagmins (Syts) represent a large family of putative membrane trafficking proteins found in various species from different phyla. In this study, I identified a novel class of Syt (named Syt XIV) conserved from Drosophila to humans and its highly related molecule, Strep14 (Syt XIV-related protein). Although both Syt XIV and Strep14 belong to the C-terminal-type (C-type) tandem C2 protein family, only Syt XIV has a single transmembrane domain at the N-terminus and a putative fatty-acylation site just downstream of the transmembrane domain. Biochemical analyses have indicated that Syt XIV is a Ca(2+)-independent Syt (e.g., Syts VIII, XII, and XIII) and that, like other Syt family proteins, it is capable of forming a Ca(2+)-independent oligomer. Unlike other Syt isoforms, however, expression of Syt XIV and Strep14 mRNA is highly restricted to mouse heart and testis and absent in the brain, where most other Syts are abundantly expressed, suggesting that Syt XIV and Strep14 may be involved in membrane trafficking in specific tissues outside the brain. I also identified all of the C-type tandem C2 proteins in humans, the mouse, the fruit fly, a nematode, a plant, and a yeast and discuss the molecular evolution of the C-type tandem C2 protein families, including the Syt family, the Syt-like protein (Slp) family, and the Doc2 family.  相似文献   

8.
Synaptotagmins (Syts) are transmembrane proteins with two Ca(2+)-binding C(2) domains in their cytosolic region. Syt I, the most widely studied isoform, has been proposed to function as a Ca(2+) sensor in synaptic vesicle exocytosis. Several of the twelve known Syts are expressed primarily in brain, while a few are ubiquitous (Sudhof, T.C., and J. Rizo. 1996. Neuron. 17: 379-388; Butz, S., R. Fernandez-Chacon, F. Schmitz, R. Jahn, and T.C. Sudhof. 1999. J. Biol. Chem. 274:18290-18296). The ubiquitously expressed Syt VII binds syntaxin at free Ca(2+) concentrations ([Ca(2+)]) below 10 microM, whereas other isoforms require 200-500 microM [Ca(2+)] or show no Ca(2+)-dependent syntaxin binding (Li, C., B. Ullrich, Z. Zhang, R.G.W. Anderson, N. Brose, and T.C. Sudhof. 1995. Nature. 375:594-599). We investigated the involvement of Syt VII in the exocytosis of lysosomes, which is triggered in several cell types at 1-5 microM [Ca(2+)] (Rodríguez, A., P. Webster, J. Ortego, and N.W. Andrews. 1997. J. Cell Biol. 137:93-104). Here, we show that Syt VII is localized on dense lysosomes in normal rat kidney (NRK) fibroblasts, and that GFP-tagged Syt VII is targeted to lysosomes after transfection. Recombinant fragments containing the C(2)A domain of Syt VII inhibit Ca(2+)-triggered secretion of beta-hexosaminidase and surface translocation of Lgp120, whereas the C(2)A domain of the neuronal- specific isoform, Syt I, has no effect. Antibodies against the Syt VII C(2)A domain are also inhibitory in both assays, indicating that Syt VII plays a key role in the regulation of Ca(2+)-dependent lysosome exocytosis.  相似文献   

9.
Synaptotagmins are a family of membrane proteins that are characterized by a single transmembrane region and tandem C2 domains and that are likely to regulate constitutive and/or regulated vesicle traffic. We have shown that a subclass of synaptotagmins (III, V, VI, and X) forms homo- and heterodimers through an evolutionarily conserved cysteine motif at their N termini (Fukuda, M., Kanno, E., and Mikoshiba, K. (1999) J. Biol. Chem. 274, 31421-31427). In this study, we identified a novel alternatively spliced variant of synaptotagmin (Syt) VI that lacks the N-terminal 85 amino acids including the transmembrane region (thus designated as Syt VIDeltaTM). Because it lacks the cysteine motif responsible for self-dimerization, Syt VIDeltaTM could not associate with Syt VI even in the presence of Ca(2+). Despite lacking the transmembrane region, Syt VIDeltaTM can associate with the plasma membrane through the C-terminal 29 amino acids. In adult mouse brain, two closely comigrating bands at M(r) approximately 50,000, which closely corresponded to the molecular weight of recombinant Syt VIDeltaTM, were detected by anti-Syt VI antibody. These immunoreactive bands were found in both soluble and membrane fractions of mouse brain, indicating that they are membrane-associated proteins (Syt VIDeltaTM), but not transmembrane proteins (Syt VI). Expression of Syt VI and Syt VIDeltaTM in PC12 or COS-7 cells indicated that the two molecules have a distinct subcellular distribution: Syt VIDeltaTM is present in the cytosol or is associated with the plasma membrane or internal membrane structures, whereas Syt VI is localized to the endoplasmic reticulum and/or Golgi-like perinuclear compartment. These results suggest that Syt VI and Syt VIDeltaTM may play distinct roles in vesicular trafficking.  相似文献   

10.
Synaptotagmins (Syts) are a family of vesicle proteins that have been implicated in both regulated neurosecretion and general membrane trafficking. Calcium-dependent interactions mediated through their C2 domains are proposed to contribute to the mechanism by which Syts trigger calcium-dependent neurotransmitter release. Syt IV is a novel member of the Syt family that is induced by cell depolarization and has a rapid rate of synthesis and a short half-life. Moreover, the C2A domain of Syt IV does not bind calcium. We have examined the biochemical and functional properties of the C2 domains of Syt IV. Consistent with its non-calcium binding properties, the C2A domain of Syt IV binds syntaxin isoforms in a calcium-independent manner. In neuroendocrine pheochromocytoma (PC12) cells, Syt IV colocalizes with Syt I in the tips of the neurites. Microinjection of the C2A domain reveals that calcium-independent interactions mediated through this domain of Syt IV inhibit calcium-mediated neurotransmitter release from PC12 cells. Conversely, the C2B domain of Syt IV contains calcium binding properties, which permit homo-oligomerization as well as hetero-oligomerization with Syt I. Our observation that different combinatorial interactions exist between Syt and syntaxin isoforms, coupled with the calcium stimulated hetero-oligomerization of Syt isoforms, suggests that the secretory machinery contains a vast repertoire of biochemical properties for sensing calcium and regulating neurotransmitter release accordingly.  相似文献   

11.
Synaptotagmins constitute a large family of membrane proteins implicated in Ca(2+)-triggered exocytosis. Structurally similar synaptotagmins are differentially localized either to secretory vesicles or to plasma membranes, suggesting distinct functions. Using measurements of the Ca(2+) affinities of synaptotagmin C2-domains in a complex with phospholipids, we now show that different synaptotagmins exhibit distinct Ca(2+) affinities, with plasma membrane synaptotagmins binding Ca(2+) with a 5- to 10-fold higher affinity than vesicular synaptotagmins. To test whether these differences in Ca(2+) affinities are functionally important, we examined the effects of synaptotagmin C2-domains on Ca(2+)-triggered exocytosis in permeabilized PC12 cells. A precise correlation was observed between the apparent Ca(2+) affinities of synaptotagmins in the presence of phospholipids and their action in PC12 cell exocytosis. This was extended to PC12 cell exocytosis triggered by Sr(2+), which was also selectively affected by high-affinity C2-domains of synaptotagmins. Together, our results suggest that Ca(2+) triggering of exocytosis involves tandem Ca(2+) sensors provided by distinct plasma membrane and vesicular synaptotagmins. According to this hypothesis, plasma membrane synaptotagmins represent high-affinity Ca(2+) sensors involved in slow Ca(2+)-dependent exocytosis, whereas vesicular synaptotagmins function as low-affinity Ca(2+) sensors specialized for fast Ca(2+)-dependent exocytosis.  相似文献   

12.
Synaptotagmin (Syt) is a family of type I membrane proteins that consists of a single transmembrane domain, a spacer domain, two Ca(2+)-binding C2 domains, and a short C terminus. We recently showed that deletion of the short C terminus (17 amino acids) of Syt IV prevented the Golgi localization of Syt IV proteins in PC12 cells and induced granular structures of various sizes in the cell body by an unknown mechanism (Fukuda, M., Ibata, K., and Mikoshiba, K. (2001) J. Neurochem. 77, 730-740). In this study we showed by electron microscopy that these structures are crystalloid endoplasmic reticulum (ER), analyzed the mechanism of its induction, and demonstrated that: (a) mutation or deletion of the evolutionarily conserved WHXL motif in the C terminus of the synaptotagmin family (Syt DeltaC) destabilizes the C2B domain structure (i.e. causes misfolding of the protein), probably by disrupting the formation of stable anti-parallel beta-sheets between the beta-1 and beta-8 strands of the C2B domain; (b) the resulting malfolded proteins accumulate in the ER rather than being transported to other membrane structures (e.g. the Golgi apparatus), with the malfolded proteins also inducing the expression of BiP (immunoglobulin binding protein), one of the ER stress proteins; and (c) the ERs in which the Syt DeltaC proteins have accumulated associate with each other as a result of oligomerization capacity of the synaptotagmin family, because the Syt IDeltaC mutant, which lacks oligomerization activity, cannot induce crystalloid ER. Our findings indicate that the conserved WHXL motif is important not only for protein interaction site but for proper folding of the C2B domain.  相似文献   

13.
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).  相似文献   

14.
Cao P  Maximov A  Südhof TC 《Cell》2011,145(2):300-311
Synaptotagmins Syt1, Syt2, Syt7, and Syt9 act as Ca(2+)-sensors for synaptic and neuroendocrine exocytosis, but the function of other synaptotagmins remains unknown. Here, we show that olfactory bulb neurons secrete IGF-1 by an activity-dependent pathway of exocytosis, and that Syt10 functions as the Ca(2+)-sensor that triggers IGF-1 exocytosis in these neurons. Deletion of Syt10 impaired activity-dependent IGF-1 secretion in olfactory bulb neurons, resulting in smaller neurons and an overall decrease in synapse numbers. Exogenous IGF-1 completely reversed the Syt10 knockout phenotype. Syt10 colocalized with IGF-1 in somatodendritic vesicles of olfactory bulb neurons, and Ca(2+)-binding to Syt10 caused these vesicles to undergo exocytosis, thereby secreting IGF-1. Thus, Syt10 controls a previously unrecognized pathway of Ca(2+)-dependent exocytosis that is spatially and temporally distinct from Ca(2+)-dependent synaptic vesicle exocytosis controlled by Syt1. Our findings thereby reveal that two different synaptotagmins can regulate functionally distinct Ca(2+)-dependent membrane fusion reactions in the same neuron.  相似文献   

15.
Synaptotagmins (Syts) are a large family of membrane proteins consisted of at least 12 isoforms. They are categorized in neuron-specific isoforms (I-V, X, and XI) and ubiquitous isoforms (VI-IX) based on their expression patterns. Syt-I, a neuron-specific and abundant isoform, has been well characterized and postulated to be the exocytotic Ca(2+) sensor. However, the functions of other isoforms remain obscure. Here, we report that ubiquitous isoforms of synaptotagmins, Syt-VII, Syt-VIII, and Syt-IX, interacted with a cytoplasmic RNA-binding protein, SYNCRIP (Synaptotagmin-binding, cytoplasmic RNA-interacting protein), through their C2B domains. SYNCRIP was originally found in the Syt-II C2AB domain bound fraction from the mouse brain lysate. cDNA cloning of SYNCRIP cDNA revealed that the protein was highly homologous to heterogeneous nuclear ribonucleoprotein R (hnRNP R) recently identified. SYNCRIP protein was ubiquitously and constantly expressed in various tissues of mice parallel to hnRNP R. SYNCRIP indeed bound RNA with preference to poly(A) RNA; however, in contrast to the nuclear localization of hnRNP R, SYNCRIP was distributed predominantly in the cytoplasm as judged by both biochemical fractionation and immunohistochemical studies. In vitro binding experiments showed the potential interaction of SYNCRIP with C2B domains of Syts except for those of Syt-V, -VI, and -X. Furthermore, the interaction between SYNCRIP and Syt-VII, -VIII, or -IX was revealed by co-immunoprecipitation experiments using COS cells transiently expressing each Syt isoform. These findings suggested that SYNCRIP was a target of ubiquitous type of Syts and implied the involvement of ubiquitous Syts in the regulation of dynamics of the cytoplasmic mRNA.  相似文献   

16.
Synaptotagmin I (or II), a possible Ca(2+)-sensor of synaptic vesicles, has two functionally distinct C2 domains: the C2A domain binds Ca2+ and the C2B domain binds inositol high polyphosphates (IP4, IP5, and IP6). Ca(2+)-regulated exocytosis of secretory vesicles is proposed to be activated by Ca2+ binding to the C2A domain and inhibited by inositol polyphosphate binding to the C2B domain. Synaptotagmins now constitute a large family and are thought to be involved in both regulated and constitutive vesicular trafficking. They are classified from their distribution as neuronal (synaptotagmin I-V, X, and XI) and the ubiquitous type (synaptotagmin VI-IX). Among them, synaptotagmins III, V, VI and X are deficient in IP4 binding activity due to the amino acid substitutions in the C-terminal region of the C2B domain, suggesting that these isoforms can work for vesicular trafficking even in the presence of inositol high polyphosphates. Synaptotagmin I is also known to be present in neuronal growth cone vesicles. Antibody against the C2A domain (anti-C2A) that inhibits Ca(2+)-regulated exocytosis also blocked neurite outgrowth of the chick dorsal root ganglion (DRG) neuron, suggesting that Ca(2+)-dependent synaptotagmin activation is also crucial for neurite outgrowth.  相似文献   

17.
18.
Secretagogue-induced changes in intracellular Ca(2+) play a pivotal role in secretion in pancreatic acini yet the molecules that respond to Ca(2+) are uncertain. Zymogen granule (ZG) exocytosis is regulated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. In nerve and endocrine cells, Ca(2+)-stimulated exocytosis is regulated by the SNARE-associated family of proteins termed synaptotagmins. This study examined a potential role for synaptotagmins in acinar secretion. RT-PCR revealed that synaptotagmin isoforms 1, 3, 6, and 7 are present in isolated acini. Immunoblotting and immunofluorescence using three different antibodies demonstrated synaptotagmin 1 immunoreactivity in apical cytoplasm and ZG fractions of acini, where it colocalized with vesicle-associated membrane protein 2. Synaptotagmin 3 immunoreactivity was detected in membrane fractions and colocalized with an endolysosomal marker. A potential functional role for synaptotagmin 1 in secretion was indicated by results that introduction of synaptotagmin 1 C2AB domain into permeabilized acini inhibited Ca(2+)-dependent exocytosis by 35%. In contrast, constructs of synaptotagmin 3 had no effect. Confirmation of these findings was achieved by incubating intact acini with an antibody specific to the intraluminal domain of synaptotagmin 1, which is externalized following exocytosis. Externalized synaptotagmin 1 was detected exclusively along the apical membrane. Treatment with CCK-8 (100 pM, 5 min) enhanced immunoreactivity by fourfold, demonstrating that synaptotagmin is inserted into the apical membrane during ZG fusion. Collectively, these data indicate that acini express synaptotagmin 1 and support that it plays a functional role in secretion whereas synaptotagmin 3 has an alternative role in endolysosomal membrane trafficking.  相似文献   

19.
Iezzi M  Eliasson L  Fukuda M  Wollheim CB 《FEBS letters》2005,579(23):5241-5246
Synaptotagmins (Syts) are involved in Ca(2+)-dependent insulin release. However, which Syt isoform is functional in primary beta-cells remains unknown. We demonstrate by electron microscopy of pancreatic islets, the association of Syt 9 with insulin granules. Silencing of Syt 9 by RNA interference adenovirus in islet cells had no effect on the expression of Syt 5, Syt 7 and Syt 3 isoforms. The latter was localized at the plasma membrane of pancreatic polypeptide cells. Insulin release in response to glucose or tolbutamide was strongly inhibited in Syt 9 deficient islets, whereas exocytosis potentiated by raising cAMP levels, was unaltered. Thus, Syt 9 may act as Ca(2+) sensor for beta-cell secretion.  相似文献   

20.
Upon entering a presynaptic terminal, an action potential opens Ca(2+) channels, and transiently increases the local Ca(2+) concentration at the presynaptic active zone. Ca(2+) then triggers neurotransmitter release within a few hundred microseconds by activating synaptotagmins Ca(2+). Synaptotagmins bind Ca(2+) via two C2-domains, and transduce the Ca(2+) signal into a nanomechanical activation of the membrane fusion machinery; this activation is mediated by the Ca(2+)-dependent interaction of the synaptotagmin C2-domains with phospholipids and SNARE proteins. In triggering exocytosis, synaptotagmins do not act alone, but require an obligatory cofactor called complexin, a small protein that binds to SNARE complexes and simultaneously activates and clamps the SNARE complexes, thereby positioning the SNARE complexes for subsequent synaptotagmin action. The conserved function of synaptotagmins and complexins operates generally in most, if not all, Ca(2+)-regulated forms of exocytosis throughout the body in addition to synaptic vesicle exocytosis, including in the degranulation of mast cells, acrosome exocytosis in sperm cells, hormone secretion from endocrine cells, and neuropeptide release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号