首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

2.
Fatty acids are endogenous ligands of peroxisome proliferator-activated receptor-alpha (PPARα), which is linked to the regulation of fatty acid uptake, lipid metabolism and breast cancer cell growth. This study was designed to screen candidate fatty acids from breast cancer tissue and to investigate the effects of these candidate fatty acids on PPARα expression, cell growth and cell cycle progression in breast cancer cell lines. One breast cancer tissue and one reference tissue were each taken from 30 individual breasts to examine for fatty acid composition and PPARα expression. The cancer cell lines MDA-MB-231 (ER–), MCF-7 (ER++++) and BT-474 (ER++) were used to explore the mechanisms regulating cell proliferation. We found that arachidonic acid (AA) and PPARα were highly expressed in the breast cancer tissues. AA stimulated the growth of all three breast cancer cells in a time- and dose-dependent manner. The growth stimulatory effect of AA was associated with PPARα activation, and the most potent effect was found in MCF-7 cells. The stimulation of cell proliferation by AA was accompanied by the increased expression of cyclin E, a reduced population of G1 phase cells, and a faster G1/S phase transition. In contrast, AA had no effects on the levels of CDK2, CDK4, cyclin D1, p27, Bcl-2 and Bax. Our results demonstrate that high levels of AA and PPARα expression in human breast cancer tissues are associated with ER-overexpressed breast cancer cell proliferation, which is involved in activating PPARα, stimulating cyclin E expression, and promoting faster G1/S transition.  相似文献   

3.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

4.
Smooth muscle cell proliferation after arterial injury is regulated by growth factors and components of the extracellular matrix. We have previously demonstrated that fibronectin promotes a phenotypic modulation of freshly isolated rat smooth muscle cells from a contractile to a synthetic phenotype in primary culture and supports the ability of the cells to respond to growth factors. Here, we analyzed if fibronectin promotes cell cycle entry in freshly isolated rat aortic smooth muscle cells during primary culture. Cell cycle analysis showed that cells seeded on fibronectin remained in the G(0)/G(1) phase of the cell cycle during the first 6 days of culture. During this period, there was an increased expression of cyclin D1 and p27(KIP1) in the absence of exogenous growth factors. Addition of serum was followed by enhanced cyclin D1 expression, decreased p27(KIP1) levels, hyperphosphorylation of Rb protein, induction of cyclin A and cyclin D3 expression, and cell cycle progression into S phase. The results indicate that fibronectin initiates cell cycle entry in freshly isolated smooth muscle cells by promoting the induction of cyclin D1 and thereby facilitates further cell cycle progression together with growth factors.  相似文献   

5.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:7,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

6.
Previously, we showed that arsenic trioxide potently inhibited the growth of myeloma cells and head and neck cancer cells. Here, we demonstrate that arsenic trioxide inhibited the proliferation of all the renal cell carcinoma cell lines (ACHN, A498, Caki-2, Cos-7, and Renca) except only one cell line (Caki-1) with IC(50) of about 2.5-10 microM. Arsenic trioxide induced a G(1) or a G(2)-M phase arrest in these cells. When we examined the effects of this drug on A498 cells, arsenic trioxide (2.5 microM) decreased the levels of CDK2, CDK6, cyclin D1, cyclin E, and cyclin A proteins. Although p21 protein was not increased by arsenic trioxide, this drug markedly enhanced the binding of p21 with CDK2. In addition, the activities of CDK2- and CDK6-associated kinase were reduced in association with hypophosphorylation of Rb protein. Arsenic trioxide (10 microM) also induced apoptosis in A498 cells. Apoptotic process of A498 cells was associated with the changes of Bcl-(XL), caspase-9, caspase-3, and caspase-7 proteins as well as mitochondria transmembrane potential (Deltapsi(m)) loss. Taken together, these results demonstrate that arsenic trioxide inhibits the growth of renal cell carcinoma cells via cell cycle arrest or apoptosis.  相似文献   

7.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

8.
Sesquicillin, isolated from fungal fermentation broth, strongly induced G1 phase arrest in human breast cancer cells. During G1 phase arrest, the expression level of cyclin D1, cyclin A, and cyclin E was decreased, and the expression of CDK (cyclin-dependent-kinase) inhibitor, protein p21(Waf1/Cip1), was increased in a time-dependent manner in a breast cancer cell MCF-7. Interestingly, the G1 phase arrest induced by sesquicillin also occurred independently of the tumor suppressor protein, p53. Sesquicillin inhibits the proliferation of MCF-7 via G1 phase arrest in association with the induction of CDK inhibitor protein, p21(Waf1/Cip1), and the reduction of G1 phase related-cyclin proteins.  相似文献   

9.
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E.  相似文献   

10.
Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.  相似文献   

11.
Zhang J  Ghio AJ  Gao M  Wei K  Rosen GD  Upadhyay D 《FEBS letters》2007,581(27):5315-5320
We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs.  相似文献   

12.
In this study, overexpression of GADD45a induced by furazolidone in HepG2 cells could arouse S‐phase cell cycle arrest, suppress cell proliferation, and increase the activities of cyclin D1, cyclin D3, and cyclin‐dependent kinase 6 (CDK6). To the opposite, GADD45a knockdown cells by RNAi could reduce furazolidone‐induced S‐phase cell cycle arrest, increase the cell viability, decrease the activities of cyclin D1, cyclin D3, and CDK6; however, cyclin‐dependent kinase 4 (CDK4) showed no change. Moreover, data from our current studies show that cyclin D1, cyclin D3, and CDK6 are target genes functioning at the downstream of the GADD45a pathway induced by furazolidone. These results demonstrate that the GADD45a pathway is partially responsible for the furazolidone‐induced S‐phase cell cycle arrest. GADD45a influences furazolidone‐induced S‐phase cell cycle arrest in human hepatoma G2 cells via cyclin D1, cyclin D3, and CDK6, but not CDK4.  相似文献   

13.
已有报道显示,富脯氨酸蛋白 14(proline-rich protein 14,PRR14)促进肿瘤的发生发展,但具体作用机制仍不清楚。本文以结肠癌细胞为模型,探索其对细胞增殖和细胞周期进程的影响。qPCR和Western 印迹检测发现,PRR14在4个结肠癌细胞系中呈现高水平表达。合成特异靶向PRR14基因的siRNA,转染结肠癌HCT116细胞。检测发现,PRR14基因表达下调约70%。CCK8结果显示,沉默PRR14后各时间点细胞增殖能力均显著降低,克隆形成实验细胞克隆数减少约40%;流式细胞仪结果显示,沉默PRR14后,G1期细胞比例升高约10%,S期细胞比例降低约14%;BrdU标记免疫荧光检测结果显示,BrdU阳性细胞比例减少约50%,表明细胞DNA合成速率显著降低。机制分析表明:促G1/S期转换基因周期蛋白依赖性激酶2(cyclin dependent kinase 2, CDK2)mRNA水平降低约85%,对应的蛋白质水平也明显降低,G1/S期转换抑制因子周期蛋白依赖性激酶抑制因子1A(cyclin dependent kinase inhibitor 1A,CDKN1A/P21)和周期蛋白依赖性激酶抑制因子1B(cyclin dependent kinase inhibitor 1B,CDKN1B/P27)mRNA水平分别升高约1.8倍和5倍,对应的蛋白质水平也明显升高。沉默PRR14表达,G1/S期相关基因表达紊乱,导致细胞G1期阻滞并抑制细胞增殖。结肠癌细胞中PRR14高表达可促进癌细胞恶性增殖。  相似文献   

14.
已有报道显示,富脯氨酸蛋白 14(proline-rich protein 14,PRR14)促进肿瘤的发生发展,但具体作用机制仍不清楚。本文以结肠癌细胞为模型,探索其对细胞增殖和细胞周期进程的影响。qPCR和Western 印迹检测发现,PRR14在4个结肠癌细胞系中呈现高水平表达。合成特异靶向PRR14基因的siRNA,转染结肠癌HCT116细胞。检测发现,PRR14基因表达下调约70%。CCK8结果显示,沉默PRR14后各时间点细胞增殖能力均显著降低,克隆形成实验细胞克隆数减少约40%;流式细胞仪结果显示,沉默PRR14后,G1期细胞比例升高约10%,S期细胞比例降低约14%;BrdU标记免疫荧光检测结果显示,BrdU阳性细胞比例减少约50%,表明细胞DNA合成速率显著降低。机制分析表明:促G1/S期转换基因周期蛋白依赖性激酶2(cyclin dependent kinase 2, CDK2)mRNA水平降低约85%,对应的蛋白质水平也明显降低,G1/S期转换抑制因子周期蛋白依赖性激酶抑制因子1A(cyclin dependent kinase inhibitor 1A,CDKN1A/P21)和周期蛋白依赖性激酶抑制因子1B(cyclin dependent kinase inhibitor 1B,CDKN1B/P27)mRNA水平分别升高约1.8倍和5倍,对应的蛋白质水平也明显升高。沉默PRR14表达,G1/S期相关基因表达紊乱,导致细胞G1期阻滞并抑制细胞增殖。结肠癌细胞中PRR14高表达可促进癌细胞恶性增殖。  相似文献   

15.
Autocrine production of insulin-like growth factor-I (IGF-I) regulates growth of human intestinal muscle cells by activation of distinct phosphatidylinositol 3-kinase (PI3-kinase)-dependent and ERK1/2-dependent pathways. The aim of the present study was to determine the mechanisms by which IGF-I regulates the G(1) phase of the cell cycle and muscle cell proliferation. Incubation of quiescent cells with IGF-I stimulated time-dependent cell cycle progression measured by using fluorescence-activated cell sorting analysis and by incorporation of [(3)H]thymidine. Studies using a microarray-based approach were used initially to identify genes expressed in human intestinal muscle encoding proteins known to participate in the G(1) phase of the cell cycle that were regulated by IGF-I. Incubation of muscle cells for 24 h with IGF-I elicited greater than fivefold increase in the expression of cyclin D1 and greater than twofold increase in retinoblastoma protein (Rb1). IGF-I elicited a time-dependent increase in cyclin D1 protein levels mediated jointly by ERK1/2-dependent and PI3-kinase-dependent mechanisms. Increase in cyclin D1 levels was accompanied by a time-dependent increase in cyclin D1-dependent cyclin-dependent kinase-4 (CDK4) activity. IGF-I also elicited a rapid time-dependent increase in Rb-(Ser807/811) phosphorylation, the specific target of the cyclin D(1)-dependent CDK4 kinase, and a slower increase in total Rb protein levels. We conclude that IGF-I stimulates G(1) phase progression, DNA synthesis, and cell proliferation of human intestinal smooth muscle cells. Effects of IGF-I on proliferation are mediated jointly by ERK1/2-dependent and PI3-kinase-dependent pathways that regulate cyclin D1 levels, CDK4 activity, and Rb activity.  相似文献   

16.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

17.
In the present study, we examined the role of PLC delta 1 (phospholipase C delta 1) in the regulation of cellular proliferation. We demonstrate that RNAi (RNA interference)-mediated knockdown of endogenous PLC delta 1, but not PLC beta 3 or PLC epsilon, induces a proliferation defect in Rat-1 and NIH 3T3 fibroblasts. The decreased proliferation was not due to an induction of apoptosis or senescence, but was associated with an approx. 60% inhibition of [(3)H]thymidine incorporation. Analysis of the cell cycle with BrdU (bromodeoxyuridine)/propidium iodide-labelled FACS (fluorescence-activated cell sorting) demonstrated an accumulation of cells in G(0)/G(1)-phase and a corresponding decrease in cells in S-phase. Further examination of the cell cycle after synchronization by serum-starvation demonstrated normal movement through G(1)-phase but delayed entry into S-phase. Consistent with these findings, G(1) cyclin (D2 and D3) and CDK4 (cyclin-dependent kinase 4) levels and associated kinase activity were not affected. However, cyclin E-associated CDK2 activity, responsible for G(1)-to-S-phase progression, was inhibited. This decreased activity was accompanied by unchanged CDK2 protein levels and paradoxically elevated cyclin E and cyclin E-associated CDK2 levels, suggesting inhibition of the cyclin E-CDK2 complex. This inhibition was not due to altered stimulatory or inhibitory phosphorylation of CDK2. However, p27, a Cip/Kip family CKI (CDK inhibitor)-binding partner, was elevated and showed increased association with CDK2 in PLC delta 1-knockdown cells. The result of the present study demonstrate a novel and critical role for PLC delta 1 in cell-cycle progression from G(1)-to-S-phase through regulation of cyclin E-CDK2 activity and p27 levels.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号