首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.  相似文献   

2.
Alterations in cerebral monoamines following application of electroacupuncture were investigated using conscious rats with and without application of restraining stress. The dopamine and serotonin levels were significantly decreased in the nucleus accumbens, caudate putamen, and lateral hypothalamus and increased in the dorsal raphe nucleus by restraining stress. On the other hand, application of electroacupuncture on the lumbar and hindlimb segments eliminated the above changes in dopamine, while the changes in serotonin were attenuated by lumbar and hindlimb electroacupuncture. However, the effects of hindlimb electroacupuncture were greater than those of lumbar electroacupuncture. These results clearly indicate that lumbar and hindlimb electroacupuncture stimulations have differential effects on brain monoaminergic neurons in rats exposed to restraining stress. Moxa burning stimulation was applied to the lumbar and hindlimb segments of rats without restraining stress. The dopamine level was significantly increased in the midbrain substantia nigra-ventrotegmental area by hindlimb moxibusion. On the other hand, the serotonin levels were significantly increased in the nucleus amygdala by lumber moxibusion and decreased in the nucleus accumbens by hindlimb moxibusion. The present results indicate that electroacupuncture applied to the lumbar and hindlimb segments has an antistress effect, while the application of moxibustion to the lumbar and hindlimb segments was likely to stimulate the functions of mesocortical and mesolimbic dopaminergic and serotonergic neurons. We suggest that functional alterations in cerebral dopaminergic and serotonergic neurons are involved in the clinical efficacy of electroacupuncture and moxibustion, especially because of their antistress and psychosomatic actions.  相似文献   

3.
Lammel S  Ion DI  Roeper J  Malenka RC 《Neuron》2011,70(5):855-862
Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli.  相似文献   

4.
Midbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is expressed in close vicinity to developing midbrain dopaminergic neurons. Here, we show that Wnt1 regulates the genetic network, including Otx2 and Nkx2-2, that is required for the establishment of the midbrain dopaminergic progenitor domain during embryonic development. In addition, Wnt1 is required for the terminal differentiation of midbrain dopaminergic neurons at later stages of embryogenesis. These results identify Wnt1 as a key molecule in the development of midbrain dopaminergic neurons in vivo. They also suggest the Wnt1-controlled signaling pathway as a promising target for new therapeutic strategies in the treatment of Parkinson's disease.  相似文献   

5.
Neurotensin (NT) is a tridecapeptide which fulfills many of the requisite criteria for a role as a central nervous system (CNS) neurotransmitter. It is closely associated with CNS dopamine neurons and has been shown to interact with dopamine at physiological, anatomical and behavioral levels. Neurotensin is colocalized with dopaminergic neurons in the hypothalamus and midbrain. In addition, it blocks behaviors associated with activation of the dopaminergic pathways. Centrally administered NT has been shown to mimic many of the actions of antipsychotic drugs. In addition, the concentration of NT in cerebrospinal fluid is decreased in patients with schizophrenia. Administration of clinically effective antipsychotic drugs increases concentrations of NT in the caudate nucleus and nucleus accumbens. NT has been shown to play a role in signal transduction by mostly mobilizing calcium stores following inositol phosphate formation. This has been linked to subsequent events in protein phosphorylation. Lipophilic NT receptor agonists may represent a novel approach to the development of a new class of antipsychotic drugs.  相似文献   

6.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

7.
Enhanced dopamine metabolism after small lesions in the midbrain of the rat   总被引:4,自引:0,他引:4  
The effect of midbrain lesions on the metabolism of dopamine (DA) in various regions of the rat brain was investigated. Small midbrain lesions produced an acute increase in the levels of the acidic metabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. Elevated levels of HVA were also found in the nucleus accumbens, tuberculum olfactorium and the cerebral cortex. The levels of HVA in the substantia nigra remained unaffected. The acute effect in the striatum of a complete transection of the ascending DA-pathway consists in an initial decrease of the levels of the metabolites followed by gradual increase. The results indicate that dopaminergic neurons do not act in an uncoordinated fashion, and that rapidly acting compensatory mechanisms are able to modify the output of this system.  相似文献   

8.
Phosphodiesterase (PDE) 10A is highly expressed in medium spiny neurons of the striatum, at the confluence of the corticostriatal glutamatergic and the midbrain dopaminergic pathways, both believed to be involved in the physiopathology of schizophrenia. There is a growing body of evidence suggesting that targeting PDE10A may be beneficial for the treatment of positive symptoms in schizophrenia. The aim of the present study was to investigate how PDE10A inhibition modulates mesolimbic dopaminergic neurotransmission. We found that the selective PDE10A inhibitor, MP-10, blocked d -amphetamine-induced hyperactivity as well as d -amphetamine-induced dopamine efflux in the nucleus accumbens in a dose-dependent manner. We further investigated the mechanism by which PDE10A inhibition affects dopaminergic neurotransmission. We report that MP-10 potentiated the effect of a high but not a low dose of d -amphetamine on the mean firing rate of dopaminergic neurons recorded from the ventral tegmental area. Similarly, the effect of a high, but not a low dose of d -amphetamine, was completely reversed by the selective D1 antagonist, SCH23390. These data suggest that the D1-regulated feedback control of midbrain dopamine neurons is a critical pathway involved in the modulation of the response of mesolimbic dopamine neurons to d -amphetamine by PDE10A inhibition.  相似文献   

9.
Extracellular concentrations of dopamine in the nucleus accumbens were monitored using microdialysis in ovariectomized female Syrian hamsters hormonally primed with estradiol and progesterone or with a similar regimen of oil injections. Some females in each of these groups had their vaginas occluded with tape, whereas the remaining females' vaginas stayed unoccluded. When exposed to a male, both groups of hormonally primed females showed high levels of lordosis. However, only in the hormone-primed, unoccluded females were there significant elevations of dialysate dopamine during the sexual interactions with the male. There were no significant elevations in dopamine levels in the oil-treated females during interactions with the male. These data suggest that nucleus accumbens dopamine is responsive to stimuli associated with the vaginocervical stimulation received by the female during intromissions by the male. Histological analyses were based on Fluoro-Gold efflux through the probes combined with immunocytochemistry for tyrosine hydroxylase. Probe placements in the rostral accumbens, caudal accumbens, or rostral bed nucleus of the stria terminalis were not distinguishable based on analyses of basal dopamine levels, volume of Fluoro-Gold injection sites, or Fluoro-Gold labeling of midbrain, tyrosine hydroxylase-stained neurons. The number of midbrain neurons containing Fluoro-Gold was positively related to basal dopamine levels, indicating that the amount of dopamine recovered from the nucleus accumbens in microdialysis studies is a function of the number of neurons contributing to the terminal field in the region of the probe.  相似文献   

10.
11.
The mechanism of response decrement in hippocampal and dopaminergic neurons on repeating stimuli based on the dopamine-dependent negative feedback in the hippocampal--basal ganglia--thalamo--hippocampal loop is suggested. Activation of hippocampal neurons caused by new stimulus facilitates occurrence of reaction of dopaminergic cells due to their disinhibition through striatopallidal cells of nucleus accumbens and ventral pallidum. However, increase in dopamine level and activation accumbens and ventral pallidum. However, increase in dopamine level and activation of D2 receptors on the striatopallidal cell, while promoting depression of hippocampal inputs, prevents disinhibition of dopaminergic cells, and their reactions start their decrement. The subsequent decrease in D1 receptor activation leads to reduction of efficiency of neuron excitation in the hippocampal CA1 fields, as well as in striatonigral cells of nucleus accumbens. This leads to a decrease of disinhibition through a direct pathway via the basal ganglia of thalamic nucleus reunions which activates neurons of the CA1 field. This effect causes decrement of reactions of the hippocampal neurons, a subsequent reduction of dopaminergic cell disinhibition, and further decrement of their responses.  相似文献   

12.
Individual differences in responses to mild, acute stressors in laboratory animals have commonly been observed in behavioural tests and at the level of hypothalamic-pituitary-adrenal axis responses. These differences are associated with dopamine transmission in the nucleus accumbens. Although the effect of mild stressors on dopamine transmission has been studied with microdialysis, it has not been studied at the level of the catecholaminergic network in the nucleus accumbens. In this study we have used microdialysis to measure extracellular concentrations of dopamine in vivo and immunocytochemistry for the enzyme tyrosine hydroxylase to assess the effect of a single exposure to novelty on the neurochemistry of the nucleus acc umbens in apomorphine-susceptible and apomorphine-unsusceptible rats. These rats are a valid animal model for studying individual differences in responses to environmental stressors and drugs of abuse. We demonstrated that a mild stressor like novelty increased the extracellular concentration of dopamine in the nucleus accumbens in apomorphine-susceptible rats to a larger and longer-lasting degree than in apomorphine-unsusceptible rats. Furthermore we demonstrated that novelty increased the tyrosine hydroxylase-immunoreactive fibre network in the nucleus accumbens shell of apomorphine-susceptible rats, which are rats that are particularly reactive to stressors, but not in the shell of apomorphine-unsusceptible rats, which are rats that are relatively stress-resistant. In conclusion, we have shown that the accumbal dopaminergic system of apomorphine-susceptible rats is more sensitive to an environmental stressor than that of apomorphine-unsusceptible rats. Combined with the fact that these animals also differ in their sensitivity to drugs of abuse, which are known to affect the dopaminergic system, these data provide a solid basis for further studying the differences in the dopaminergic responsiveness to drugs of abuse between apomorphine-susceptible and apomorphine-unsusceptible rats.  相似文献   

13.
Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1-1000 μM), cocaine (0.1-300 μM) or morphine (0.1-100 μM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1-1000 μM) had little effect. Following repeated exposure to methamphetamine (10 μM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1-300 μM) or morphine (10 and 100 μM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 μM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse.  相似文献   

14.
Cannabinoid receptors are widely distributed in the nuclei of the extrapyramidal motor and mesolimbic reward systems; their exact functions are, however, not known. The aim of the present study was to characterize the effects of cannabinoids on the electrically evoked release of endogenous dopamine in the corpus striatum and the nucleus accumbens. In rat brain slices dopamine release elicited by single electrical pulses was determined by fast cyclic voltammetry. Dopamine release was markedly inhibited by the OP2 opioid receptor agonist U-50488 and the D2/D3 dopamine receptor agonist quinpirole, indicating that our method is suitable for studying presynaptic modulation of dopamine release. In contrast, the CB1/CB2 cannabinoid receptor agonists WIN55212-2 (10(-6) M) and CP55940 (10(-6)-10(-5) M) and the CB1 cannabinoid receptor antagonist SR141716A (10(-6) M) had no effect on the electrically evoked dopamine release in the corpus striatum and the nucleus accumbens. The lack of a presynaptic effect on terminals of nigrostriatal and mesolimbic dopaminergic neurons is in accord with the anatomical distribution of cannabinoid receptors: The perikarya of these neurons in the substantia nigra and the ventral tegmental area do not synthesize mRNA, and hence protein, for CB1 and CB2 cannabinoid receptors. It is therefore unlikely that presynaptic modulation of dopamine release in the corpus striatum and the nucleus accumbens plays a role in the extrapyramidal motor and rewarding effects of cannabinoids.  相似文献   

15.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration.  相似文献   

16.
Dopaminergic neurons   总被引:2,自引:0,他引:2  
  相似文献   

17.
Beta-endorphin is an endogenous opioid peptide that has been hypothesized to be involved in the behavioral effects of drugs of abuse including psychostimulants. Using microdialysis, we studied the effect of cocaine on extracellular levels of beta-endorphin in the nucleus accumbens, a brain region involved in the reinforcing effects of psychostimulant drugs. Experimenter-delivered cocaine (2 mg/kg, i.v.) increased extracellular beta-endorphin immunoreactive levels in the nucleus accumbens, an effect attenuated by 6-hydroxy-dopamine lesions or systemic administration of the D1-like receptor antagonist, SCH-23390 (0.25 mg/kg, i.p.). The effect of cocaine on beta-endorphin release in the nucleus accumbens was mimicked by a local perfusion of dopamine (5 microm) and was blocked by coadministration of SCH-23390 (10 microm). Self-administered cocaine (1 mg/kg/infusion, i.v.) also increased extracellular beta-endorphin levels in the nucleus accumbens. In addition, using functional magnetic resonance imaging, we found that cocaine (1 mg/kg, i.v.) increases regional brain activity in the nucleus accumbens and arcuate nucleus. We demonstrate an increase in beta-endorphin release in the nucleus accumbens following experimenter-delivered and self-administered cocaine mediated by the local dopaminergic system. These findings suggest that activation of the beta-endorphin neurons within the arcuate nucleus-nucleus accumbens pathway may be important in the neurobiological mechanisms underlying the behavioral effects of cocaine.  相似文献   

18.
Philpot K  Smith Y 《Peptides》2006,27(8):1987-1992
Over the past decade, CART peptide has been commonly associated with the rewarding and reinforcing properties of drugs of abuse and natural rewards such as food. The mesolimbic dopamine system is the predominant pathway involved in mediating reward and reinforcement. Many behavioral and neuroanatomical studies have been conducted in order to further elucidate the importance of CART-containing neurons within the mesolimbic dopamine system. This chapter will review the current knowledge of the localization, synaptic connectivity and neurochemical content of CART peptidecontaining neurons in nuclei of the mesolimbic reward pathway. These nuclei include the nucleus accumbens (NA), ventral midbrain, and the lateral hypothalamus (LH). In conclusion, an interconnected CART-containing loop between the NA, ventral midbrain and LH has evolved from these neuroanatomical studies that may have functional implications for CART peptide's involvement in reward and reinforcement.  相似文献   

19.
The prefrontal cortex (PFC) is thought to provide an excitatory influence on the output of mesoaccumbens dopamine neurons. The evidence for this influence primarily arises from findings in the rat that chemical or high-intensity and high-frequency (60-200 Hz) electrical stimulations of PFC increase burst activity of midbrain dopamine neurons, and augment terminal release of dopamine in the nucleus accumbens. However, PFC neurons in animals that are engaged in PFC-dependent cognitive tasks increase their firing frequency from a baseline of 1-3 Hz to 7-10 Hz, suggesting that the commonly used high-frequency stimulation parameters of the PFC may not be relevant to the behavioral states that are associated with PFC activation. We investigated the influence of PFC activation at lower physiologically relevant frequencies on the release of dopamine in the nucleus accumbens. Using rapid (5-min) microdialysis measures of extracellular dopamine in the nucleus accumbens, we found that although PFC stimulation at 60 Hz produces the expected increases in accumbal dopamine release, the same amplitude of PFC stimulation at 10 Hz significantly decreased these levels. These results indicate that activation of PFC, at frequencies that are associated with increased cognitive demand on this region, inhibits the mesoaccumbens dopamine system.  相似文献   

20.
The nucleus accumbens, situated at the junction between rostral pre-commissural caudate and putamen, is now considered to be critically involved in rewarding and motivational functions mediated by the neurotransmitter dopamine. However, in the human, the precise anatomical boundaries of this nucleus are still undetermined and controversy exists as to the extent to which nucleus accumbens activity is controlled by noradrenaline, a related neurotransmitter now much neglected (in favor of dopamine) by the scientific community. Here we resolve the question of noradrenaline in the human nucleus accumbens and identify, in autopsied brain of normal subjects, a small subdivision of the caudomedial portion of this nucleus that selectively contains strikingly high levels of noradrenaline and thus represents the only area in human brain having equally high levels of both noradrenaline and dopamine. The presence of very high, localized noradrenaline concentrations in the caudomedial nucleus accumbens implies a special biological role for this neurotransmitter in human brain motivational processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号