首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Here we present and describe comparatively 25 talus bones from the Middle Pleistocene site of the Sima de los Huesos (SH) (Sierra de Atapuerca, Burgos, Spain). These tali belong to 14 individuals (11 adult and three immature). Although variation among Middle and Late Pleistocene tali tends to be subtle, this study has identified unique morphological characteristics of the SH tali. They are vertically shorter than those of Late Pleistocene Homo sapiens, and show a shorter head and a broader lateral malleolar facet than all of the samples. Moreover, a few shared characters with Neanderthals are consistent with the hypothesis that the SH population and Neanderthals are sister groups. These shared characters are a broad lateral malleolar facet, a trochlear height intermediate between modern humans and Late Pleistocene H. sapiens, and a short middle calcaneal facet. It has been possible to propose sex assignment for the SH tali based on their size. Stature estimates based on these fossils give a mean stature of 174.4 cm for males and 161.9 cm for females, similar to that obtained based on the long bones from this same site.  相似文献   

3.
Many morphological features of the Pleistocene fossil hominin Homo neanderthalensis, including the reputed large size of its paranasal sinuses, have been interpreted as adaptations to extreme cold, as some Neanderthals lived in Europe during glacial periods. This interpretation of sinus evolution rests on two assumptions: that increased craniofacial pneumatization is an adaptation to lower ambient temperatures, and that Neanderthals have relatively large sinuses. Analysis of humans, other primates, and rodents, however, suggests that the first assumption is suspect; at least the maxillary sinus undergoes a significant reduction in volume in extreme cold, in both wild and laboratory conditions. The second assumption, that Neanderthal sinuses are large, extensive, or even ‘hyperpneumatized,’ has held sway since the first specimen was described and has been interpreted as the causal explanation for some of the distinctive aspects of Neanderthal facial form, but has never been evaluated with respect to scaling. To test the latter assumption, previously published measurements from two-dimensional (2D) X-rays and new three-dimensional (3D) data from computed tomography (CT) of Neanderthals and temperate-climate European Homo sapiens are regressed against cranial size to determine the relative size of their sinuses. The 2D data reveal a degree of craniofacial pneumatization in Neanderthals that is both commensurate with the size of the cranium and comparable in scale with that seen in temperate climate H. sapiens. The 3D analysis of CT data from a smaller sample supports this conclusion. These results suggest that the distinctive Neanderthal face cannot be interpreted as a direct result of increased pneumatization, nor is it likely to be an adaptation to resist cold stress; an alternative explanation is thus required.  相似文献   

4.
The study of dental morphology by means of geometric morphometric methods allows for a detailed and quantitative comparison of hominin species that is useful for taxonomic assignment and phylogenetic reconstruction. Upper second and third molars have been studied in a comprehensive sample of Plio- and Pleistocene hominins from African, Asian and European sites in order to complete our analysis of the upper postcanine dentition. Intraspecific variation in these two molars is high, but some interspecific trends can be identified. Both molars exhibit a strong reduction of the distal cusps in recent hominin species, namely European Homo heidelbergensis, Homo neanderthalensis and Homo sapiens, but this reduction shows specific patterns and proportions in the three groups. Second molars tend to show four well developed cusps in earlier hominin species and their morphology is only marginally affected by allometric effects. Third molars can be incipiently reduced in earlier species and they evince a significant allometric component, identified both inter- and intraspecifically. European Middle Pleistocene fossils from Sima de los Huesos (SH) show a very strong reduction of these two molars, even more marked than the reduction observed in Neanderthals and in modern human populations. The highly derived shape of SH molars points to an early acquisition of typical Neanderthal dental traits by pre-Neanderthal populations and to a deviation of this population from mean morphologies of other European Middle Pleistocene groups.  相似文献   

5.
Neanderthals have a distinctive suite of dental features, including large anterior crown and root dimensions and molars with enlarged pulp cavities. Yet, there is little known about variation in molar root morphology in Neanderthals and other recent and fossil members of Homo. Here, we provide the first comprehensive metric analysis of permanent mandibular molar root morphology in Middle and Late Pleistocene Homo neanderthalensis, and Late Pleistocene (Aterian) and recent Homo sapiens. We specifically address the question of whether root form can be used to distinguish between these groups and assess whether any variation in root form can be related to differences in tooth function. We apply a microtomographic imaging approach to visualise and quantify the external and internal dental morphologies of both isolated molars and molars embedded in the mandible (n = 127). Univariate and multivariate analyses reveal both similarities (root length and pulp volume) and differences (occurrence of pyramidal roots and dental tissue volume proportion) in molar root morphology among penecontemporaneous Neanderthals and Aterian H. sapiens. In contrast, the molars of recent H. sapiens are markedly smaller than both Pleistocene H. sapiens and Neanderthals, but share with the former the dentine volume reduction and a smaller root-to-crown volume compared with Neanderthals. Furthermore, we found the first molar to have the largest average root surface area in recent H. sapiens and Neanderthals, although in the latter the difference between M1 and M2 is small. In contrast, Aterian H. sapiens root surface areas peak at M2. Since root surface area is linked to masticatory function, this suggests a distinct occlusal loading regime in Neanderthals compared with both recent and Pleistocene H. sapiens.  相似文献   

6.
It is generally accepted that from the late Middle to the early Late Pleistocene (~340–90 ka BP), Neanderthals were occupying Europe and Western Asia, whereas anatomically modern humans were present in the African continent. In contrast, the paucity of hominin fossil evidence from East Asia from this period impedes a complete evolutionary picture of the genus Homo, as well as assessment of the possible contribution of or interaction with Asian hominins in the evolution of Homo sapiens and Homo neanderthalensis. Here we present a comparative study of a hominin dental sample recovered from the Xujiayao site, in Northern China, attributed to the early Late Pleistocene (MIS 5 to 4). Our dental study reveals a mosaic of primitive and derived dental features for the Xujiayao hominins that can be summarized as follows: i) they are different from archaic and recent modern humans, ii) they present some features that are common but not exclusive to the Neanderthal lineage, and iii) they retain some primitive conformations classically found in East Asian Early and Middle Pleistocene hominins despite their young geological age. Thus, our study evinces the existence in China of a population of unclear taxonomic status with regard to other contemporary populations such as H. sapiens and H. neanderthalensis. The morphological and metric studies of the Xujiayao teeth expand the variability known for early Late Pleistocene hominin fossils and suggest the possibility that a primitive hominin lineage may have survived late into the Late Pleistocene in China. Am J Phys Anthropol 156:224–240, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The classification and phylogenetic relationships of the middle Pleistocene human fossil record remains one of the most intractable problems in paleoanthropology. Several authors have noted broad resemblances between European and African fossils from this period, suggesting a single taxon ancestral to both modern humans and Neanderthals. Others point out ‘incipient’ Neanderthal features in the morphology of the European sample and have argued for their inclusion in the Neanderthal lineage exclusively, following a model of accretionary evolution of Neanderthals. We approach these questions using geometric morphometric methods which allow the intuitive visualization and quantification of features previously described qualitatively. We apply these techniques to evaluate proposed cranio-facial ‘incipient’ facial, vault, and basicranial traits in a middle-late Pleistocene European hominin sample when compared to a sample of the same time depth from Africa. Some of the features examined followed the predictions of the accretion model and relate the middle Pleistocene European material to the later Neanderthals. However, although our analysis showed a clear separation between Neanderthals and early/recent modern humans and morphological proximity between European specimens from OIS 7 to 3, it also shows that the European hominins from the first half of the middle Pleistocene still shared most of their cranio-facial architecture with their African contemporaries.  相似文献   

8.
Over the last two decades, the Pleistocene sites of the Sierra de Atapuerca (Spain) have provided two extraordinary assemblages of hominin fossils that have helped refine the evolutionary story of the genus Homo in Europe. The TD6 level of the Gran Dolina site has yielded about one hundred remains belonging to a minimum of six individuals of the species Homo antecessor. These fossils, dated to the end of the Lower Pleistocene (800 kyr), provide the earliest evidence of hominin presence in Western Europe. The origin of these hominins is unknown, but they may represent a speciation event from Homo ergaster/Homo erectus. The TD6 fossils are characterized by a significant increase in cranial capacity as well as the appearance of a “sapiens” pattern of craniofacial architecture. At the Sima de los Huesos site, more than 4,000 human fossils belonging to a minimum of 28 individuals of a Middle Pleistocene population (ca. 500–400 kyr) have been recovered. These hominins document some of the oldest evidence of the European roots of Neanderthals deep in the Middle Pleistocene. Their origin would be the dispersal out of Africa of a hominin group carrying Mode 2 technologies to Europe. Comparative study of the TD6 and Sima de la Huesos hominins suggests a replacement model for the European Lower Pleistocene population of Europe or interbreeding between this population and the new African emigrants.  相似文献   

9.
Neanderthal forearms have been described as being very powerful. Different individual features in the lower arm bones have been described to distinguish Neanderthals from modern humans. In this study, the overall morphology of the radius and ulna is considered, and morphological differences among Neanderthals, Upper Paleolithic Homo sapiens and recent H. sapiens are described.Comparisons among populations were made using a combination of 3D geometric morphometrics and standard multivariate methods. Comparative material included all available complete radii and ulnae from Neanderthals, early H. sapiens and archaeological and recent human populations, representing a wide geographical and lifestyle range.There are few differences among the populations when features are considered individually. Neanderthals and early H. sapiens fell within the range of modern human variation. When the suite of measurements and shapes were analyzed, differences and similarities became apparent. The Neanderthal radius is more laterally curved, has a more medially placed radial tuberosity, a longer radial neck, a more antero-posteriorly ovoid head and a well-developed proximal interosseous crest. The Neanderthal ulna has a more anterior facing trochlear notch, a lower M. brachialis insertion, larger relative mid-shaft size and a more medio-lateral and antero-posterior sinusoidal shaft. The Neanderthal lower arm morphology reflects a strong cold-adapted short forearm. The forearms of H. sapiens are less powerful in pronation and supination. Many differences between Neanderthals and H. sapiens can be explained as a secondary consequence of the hyper-polar body proportions of the Neanderthals, but also as retentions of the primitive condition of other hominoids.  相似文献   

10.
Patterns of human evolution in the Middle Pleistocene remain poorly understood. There is general consensus that by the onset of this time period, populations ofHomo erectus were dispersed from Africa into Eurasia, including the Far East. In the western part of this range (perhaps in Africa),Homo erectus then produced a daughter lineage exhibiting more advanced characters of the face, braincase and cranial base. How this new species should be defined is currently debated. In my view, fossils from sites such as Bodo and Broken Hill in Africa may be lumped with material from earlier Middle Pleistocene localities in Europe. Such a taxon is appropriately namedHomo heidelbergensis. Whether the hypodigm should be extended to include fossils from China is another question. In any case, this group of hominids is plausibly ancestral to both the specialized Neanderthals of Europe and more modern humans of the later Middle Pleistocene.  相似文献   

11.
Enamel and dentin patterns have awakened a considerable interest in phylogenetic studies. However, almost nothing is known about the dental tissue proportions of European Pleistocene hominins, apart from Neanderthal populations. This study aims to assess the three-dimensional dental tissue proportions of permanent canines belonging to the extensive sample of hominin teeth at Sierra de Atapuerca (Spain) through the use of microtomographic techniques. Our results show that early and middle Pleistocene populations from Atapuerca exhibit large coronal and root dentine dimensions, as well as a thinly enamelled pattern, which has been traditionally considered an autapomorphic Neanderthal trait. Therefore, these results might support an early enamel thickness decrease which is already observed 800 kyr ago in Homo antecessor and maintained in later groups such as Sima de los Huesos and Neanderthal populations during the middle Pleistocene.  相似文献   

12.
Excavations at Liang Bua, on the Indonesian island of Flores, have yielded a stratified sequence of stone artifacts and faunal remains spanning the last 95 k.yr., which includes the skeletal remains of two human species, Homo sapiens in the Holocene and Homo floresiensis in the Pleistocene. This paper summarizes and focuses on some of the evidence for Homo floresiensis in context, as presented in this Special Issue edition of the Journal of Human Evolution and elsewhere. Attempts to dismiss the Pleistocene hominins (and the type specimen LB1 in particular) as pathological pygmy humans are not compatible with detailed analyses of the skull, teeth, brain endocast, and postcranium. We initially concluded that H. floresiensis may have evolved by insular dwarfing of a larger-bodied hominin species over 880 k.yr. or more. However, recovery of additional specimens and the numerous primitive morphological traits seen throughout the skeleton suggest instead that it is more likely to be a late representative of a small-bodied lineage that exited Africa before the emergence of Homo erectus sensu lato. Homo floresiensis is clearly not an australopithecine, but does retain many aspects of anatomy (and perhaps behavior) that are probably plesiomorphic for the genus Homo. We also discuss some of the other implications of this tiny, endemic species for early hominin dispersal and evolution (e.g., for the “Out of Africa 1” paradigm and more specifically for colonizing Southeast Asia), and we present options for future research in the region.  相似文献   

13.
The Anterior Dental Loading Hypothesis states that the unique Neanderthal facial and dental anatomy was an adaptive response to the regular application of heavy forces resulting from both the masticatory and cultural use of the anterior teeth. Heavy anterior tooth wear frequently observed in Neanderthal specimens is cited as a main source of evidence for heavy forces being applied to these teeth. From this, it might be predicted that the wear shown on the anterior teeth of Neanderthals would greatly exceed that of the posterior teeth and that this differential would be greater than in other hominins with different facial morphologies.In this paper, a new method of examining tooth wear patterns is used to test these predictions in a large assemblage of Late Pleistocene hominins and a group of recent hunter-gatherers from Igloolik, Canada. The results show that all Late Pleistocene hominins, including Neanderthals, had heavily worn anterior teeth relative to their posterior teeth but, contrary to expectations, this was more pronounced in the modern humans than in the Neanderthals. The Igloolik Inuit showed heavier anterior tooth wear relative to their posterior teeth than any Late Pleistocene hominins. There was, however, a characteristic Neanderthal pattern in which wear was more evenly spread between anterior teeth than in modern humans. Overall, the evidence presented here suggests that all Late Pleistocene hominins habitually applied heavy forces between their anterior teeth and that Neanderthals were not exceptional in this regard. These results therefore does not support the Anterior Dental Loading Hypothesis.  相似文献   

14.
15.
A better understanding of the evolutionary relationship between modern humans and Neanderthals is essential for improving the resolution of hominin phylogenetic hypotheses. Currently, four distinct chronologies for the timing of population divergence are available, ranging from the late Middle Pleistocene to the late Early Pleistocene, each based on different interpretations of hominin taxonomy. Genetic data can present an independent estimate of the evolutionary timescale involved, making it possible to distinguish between these competing models of hominin evolution. We analysed five dated Neanderthal mitochondrial genomes, together with those of 54 modern humans, and inferred a genetic chronology using multiple age calibrations. Our mean date estimates are consistent with a process of genetic divergence within an ancestral population, commencing approximately 410-440 ka. These results suggest that a reappraisal of key elements in the Pleistocene hominin fossil record may now be required.  相似文献   

16.
17.
The announcement of a new species, Homo floresiensis, a primitive hominin that survived until relatively recent times is an enormous challenge to paradigms of human evolution. Until this announcement, the dominant paradigm stipulated that: 1) only more derived hominins had emerged from Africa, and 2) H. sapiens was the only hominin since the demise of Homo erectus and Homo neanderthalensis. Resistance to H. floresiensis has been intense, and debate centers on two sets of competing hypotheses: 1) that it is a primitive hominin, and 2) that it is a modern human, either a pygmoid form or a pathological individual. Despite a range of analytical techniques having been applied to the question, no resolution has been reached. Here, we use cladistic analysis, a tool that has not, until now, been applied to the problem, to establish the phylogenetic position of the species. Our results produce two equally parsimonious phylogenetic trees. The first suggests that H. floresiensis is an early hominin that emerged after Homo rudolfensis (1.86 Ma) but before H. habilis (1.66 Ma, or after 1.9 Ma if the earlier chronology for H. habilis is retained). The second tree indicates H. floresiensis branched after Homo habilis.  相似文献   

18.
A new model may resolve the problem of when and where did appear anatomically modern humans. According to this model, Neanderthals were probably neither our ancestor nor different species.Homo sapiens appeared probably in the Middle East, approximately 150 ka ago and differentiated to anatomically modern humans and Neanderthals because of the genetic programme. The fossils older than 150 ka are probably not Neanderthal such as Zuttiyeh and Biache-Saint-Vaast specimens. Cultural capacities of Neanderthals were probably equivalent to Moderns. Most of pre-Homo sapiens populations may be extinct without replacement byHomo sapiens. Language and modern behaviour should have arisen with our own species.  相似文献   

19.
The morphology of human clavicles can be estimated by projecting them on two perpendicular planes in order to assess the shapes of their cranial and dorsal primary curvatures. In cranial view no differences in curvature appear within the genus Homo, which means the different species had similar arms elevation capacity, especially in protraction. On the contrary, in dorsal view two clavicles morphologies could be defined. The first one is characterized by two curvatures in dorsal view and is possessed by all Homo species, from Homo habilis to Neanderthal, including Homo ergaster, but not modern human, Upper Paleolithic and anatomically modern human remains, who possess clavicles of the second type, characterized by either one curvature, or two slightly pronounced ones in dorsal view. Clavicles displaying two pronounced curvatures in dorsal view are associated with scapula sitting high on the thorax in regard to modern human. However, shoulder with high scapula on the thorax displays two different kinds of architectures: (i) shoulder with short clavicles associated to scapulas sitting more laterally than those of modern human. This group includes earlier Homo like Homo habilis and Homo ergaster and (ii) shoulder with long clavicles associated to scapulas sitting more dorsally on the thorax, like those of modern human. This group includes Homoantecessor and Neanderthals. In other words, within the genus Homo, three shoulders would have existed. Evolution of the shoulder complex is far more complex than previously thought and the arrival of modern bipedalism was not associated to modern shoulder.  相似文献   

20.
Except for the front end of the dental arch, tooth size remained at approximately the same level throughout the Middle Pleistocene. The Krapina Neanderthals at the end of the last interglacial differed from Homo erectus only in having larger front teeth. From that time on, tooth size in populations at the northern edge of the area of human occupation in the Old World has reduced approximately in proportion to the time elapsed. The “Classic” Neanderthals of western Europe, in fact, have teeth that are 15% smaller than those of the earlier Krapina Neanderthals and only 5% larger than the early Upper Palaeolithic. Reduction since the early Upper Palaeolithic has proceeded another full 20%. It is suggested that the development of heated stone cooking in the Mousterian, originally for the purpose of thawing frozen food, reduced the forces of selection that had previously maintained tooth size during the Middle Pleistocene. The operation of the Probable Mutation Effect, then produced the observed reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号