首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the “continuity versus discontinuity” discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother–infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.  相似文献   

2.
For some traits, the human genome is more closely related to either the bonobo or the chimpanzee genome than they are to each other. Therefore, it becomes crucial to understand whether and how morphostructural differences between humans, chimpanzees and bonobos reflect the well known phylogeny. Here we comparatively investigated intra and extra labyrinthine semicircular canals orientation using 260 computed tomography scans of extant humans (Homo sapiens), bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Humans and bonobos proved more similarities between themselves than with chimpanzees. This finding did not fit with the well established chimpanzee – bonobo monophyly. One hypothesis was convergent evolution in which bonobos and humans produce independently similar phenotypes possibly in response to similar selective pressures that may be associated with postural adaptations. Another possibility was convergence following a “random walk” (Brownian motion) evolutionary model. A more parsimonious explanation was that the bonobo-human labyrinthine shared morphology more closely retained the ancestral condition with chimpanzees being subsequently derived. Finally, these results might be a consequence of genetic diversity and incomplete lineage sorting. The remarkable symmetry of the Semicircular Canals was the second major finding of this article with possible applications in taphonomy. It has the potential to investigate altered fossils, inferring the probability of post-mortem deformation which can lead to difficulties in understanding taxonomic variation, phylogenetic relationships, and functional morphology.  相似文献   

3.
In long–lived social mammals such as primates, individuals can benefit from social bonds with close kin, including their mothers. In the patrilocal chimpanzee (Pan troglodytes spp.) and bonobo (Pan paniscus), sexually mature males reside and reproduce in their natal groups and can retain post-dependency bonds with their mothers, while immatures of both sexes might also have their paternal grandmothers available. However, quantitative information on the proportion of males and immatures that co-reside with both types of these close female relatives is limited for both species. Combining genetic parentage determination and group composition data from five communities of wild chimpanzees and three communities of wild bonobos, we estimated the frequency of co-residence between (1) mature males and their mothers, and (2) immature males and females and their paternal grandmothers. We found that adult males resided twice as frequently with their mothers in bonobos than in chimpanzees, and that immature bonobos were three times more likely to possess a living paternal grandmother than were immature chimpanzees. Patterns of female and male survivorship from studbook records of captive individuals of both species suggest that mature bonobo females survive longer than their chimpanzee counterparts, possibly contributing to the differences observed in mother–son and grandmother–immature co-residency levels. Taking into account reports of bonobo mothers supporting their sons'' mating efforts and females sharing food with immatures other than their own offspring, our findings suggest that life history traits may facilitate maternal and grandmaternal support more in bonobos than in chimpanzees.  相似文献   

4.
Results from a 10 month study of adult male and female bonobos (Pan paniscus) in the Lomako Forest, Zaire, and those from a 7 month study of adult male and female chimpanzees in the Tai Forest, Ivory Coast (Pan troglodytes verus), were compared in order to determine whether there are species differences in locomotor behavior and substrate use and, if so, whether these differences support predictions made on the basis of interspecific morphological differences. Results indicate that bonobos are more arboreal than chimpanzees and that male bonobos are more suspensory than their chimpanzee counterpart. This would be predicted on the basis of male bonobo's longer and more narrow scapula. This particular finding is contrary to the prediction that the bonobo is a “scaled reduced version of a chimpanzee” with little or no positional behavior difference as had been suggested. This study provides the behavioral data necessary to untangle contradictory interpretations of the morphological differences between chimpanzees and bonobos, and raises a previously discussed (Fleagle: Size and Scaling in Primate Biology, pp. 1–19, 1985) but frequently overlooked point–that isometry in allometric studies does not necessarily equate with behavioral equivalence. Several researchers have demonstrated that bonobos and chimpanzees follow the same scaling trends for many features, and are in some sense functionally equivalent, since they manage to feed and reproduce. However, as reflected in their morphologies, they do so through different types and frequencies of locomotor behaviors. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The ratio of the second-to-fourth finger lengths (2D:4D) has been proposed as an indicator of prenatal sex differentiation. However, 2D:4D has not been studied in the closest living human relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). We report the results from 79 chimpanzees and 39 bonobos of both sexes, including infants, juveniles, and adults. We observed the expected sex difference in 2D:4D, and substantially higher, more human-like, 2D:4D in bonobos than chimpanzees. Previous research indicates that sex differences in 2D:4D result from differences in prenatal sex hormone levels. We hypothesize that the species difference in 2D:4D between bonobos and chimpanzees suggests a possible role for early exposure to sex hormones in the development of behavioral differences between the two species.  相似文献   

6.
Although chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are closely related, females of the two species show surprisingly large differences in many behavioral aspects. While female chimpanzees tend to range alone or in small parties during non-estrous periods, female bonobos aggregate even more often than do males. Female chimpanzees do not have frequent social interactions with other females, whereas female bonobos maintain close social associations with one another. Although the ranging patterns of chimpanzee parties are generally led by males, female bonobos often take the initiative in ranging behavior. While female chimpanzees usually do not exhibit estrus during postpartum amenorrhea or pregnancy, female bonobos exhibit a prolonged pseudo-estrus during such non-conceptive periods. Studies of these two species have also shown great differences in agonistic behaviors performed by males. Male chimpanzees frequently fight with other males to compete for estrous females, but male bonobos seldom do so. While there are many records of infanticide by male chimpanzees, there is no confirmed record of such an event among bonobos. Several cases of within-group killing among adult male chimpanzees have been reported, but there is no such record for bonobos. While intergroup conflicts among chimpanzees sometimes involve killing members of the other group, intergroup conflicts among bonobos are considerably more moderate. In some cases, bonobos from two different groups may even range together for several days while engaging in various peaceful interactions. I will address two important questions that arise from these comparisons, exploring why females of such closely related species show such clear differences in behavior and whether or not the behavioral characteristics of female bonobos contribute to the peaceful nature of bonobo society.  相似文献   

7.
Compared to data from chimpanzees, observations on prey capture and meat eating by bonobos (Pan paniscus) are still rare, fragmentary and anecdotal. Here we present new and unpublished information from wild bonobos at Lui Kotale, Salonga National Park, Democratic Republic of Congo. Our observations confirm that solitary and terrestrial ungulates are the major prey. However, bonobos at Lui Kotale also consumed other mammalian prey, including other primates. Evidence from direct observations is complemented with information obtained by macroscopic analyses of fresh faeces. Results suggest that bonobos consume meat with frequencies similar to some chimpanzee populations. The data emphasize differences between the two Pan species in terms of prey species selection and prey capture.  相似文献   

8.
We investigated intra- and interspecific differences in life history and reproductive parameters in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We compare the parameters of wild and captive females in order to shed light on the influence of habitat or specific differences or both on reproduction. We present new and additional information on reproductive parameters from captive bonobos and chimpanzees. Captive chimpanzees birth more live offspring and have a shorter interbirth interval, but experience higher infant mortality than captive bonobos. Although captive bonobo females tend to start reproduction at a younger age than chimpanzees, this is effectively only so for wild-born females of both species. Ultimately both species reach the same rate of production of offspring surviving to 5 yr. These results contrast with data from the wild. Wild bonobos tend to have higher reproductive success, a higher fertility rate and a shorter interbirth interval than wild chimpanzees. Reproduction is similar for wild and captive bonobos, which suggests that they are producing at their maximum under both conditions. Overall captive chimpanzees perform better than their wild conspecifics, probably because of lower feeding competition. Infant survival is the only specific difference not affected by captivity. Bonobo infants survive better, which suggests that chimpanzee infants are more at risk. We argue that the interspecific variation in reproductive parameters in captivity is related to the different influence of captivity on reproduction and different pressures of external sources of infant and juvenile mortality.  相似文献   

9.
Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human–chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1–1.5, 1.1–0.76 and 0.25–0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.  相似文献   

10.
11.
The timing of tooth mineralization in bonobos (Pan paniscus) is virtually uncharacterized. Analysis of these developmental features in bonobos and the possible differences with its sister species, the chimpanzee (P. troglodytes), is important to properly quantify the normal ranges of dental growth variation in closely related primate species. Understanding this variation among bonobo, chimpanzee and modern human dental development is necessary to better contextualize the life histories of extinct hominins. This study tests whether bonobos and chimpanzees are distinguished from each other by covariance among the relative timing and sequences of tooth crown initiation, mineralization, root extension, and completion. Using multivariate statistical analyses, we compared the relative timing of permanent tooth crypt formation, crown mineralization, and root extension between 34 P. paniscus and 80 P. troglodytes mandibles radiographed in lateral and occlusal views. Covariance among our 12 assigned dental scores failed to statistically distinguish between bonobos and chimpanzees. Rather than clustering by species, individuals clustered by age group (infant, younger or older juvenile, and adult). Dental scores covaried similarly between the incisors, as well as between both premolars. Conversely, covariance among dental scores distinguished the canine and each of the three molars not only from each other, but also from the rest of the anterior teeth. Our study showed no significant differences in the relative timing of permanent tooth crown and root formation between bonobos and chimpanzees. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Despite several decades of research, there remains a lack of consensus on the extent to which bonobos are paedomorphic (juvenilized) chimpanzees in terms of cranial morphology. This study reexamines the issue by comparing the ontogeny of cranial shape in cross-sectional samples of bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) using both internal and external 3D landmarks digitized from CT scans. Geometric morphometric methods were used to quantify shape and size; dental-maturation criteria were used to estimate relative dental age. Heterochrony was evaluated using combined size-shape (allometry) and shape-age relationships for the entire cranium, the face, and the braincase. These analyses indicate that the bonobo skull is paedomorphic relative to the chimpanzee for the first principal component of size-related shape variation, most likely via a mechanism of postformation (paedomorphosis due to initial shape underdevelopment). However, the results also indicate that not all aspects of shape differences between the two species, particularly in the face, can be attributed to heterochronic transformation and that additional developmental differences must also have occurred during their evolution.  相似文献   

13.

Background

Many group–living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male–mediated gene flow might occur through rare events such as extra–group matings leading to extra–group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed.

Methodology/Principal Findings

Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y–chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y–chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y–haplotypes within western chimpanzee and bonobo groups is best explained by successful male–mediated gene flow.

Conclusions/Significance

The similarity of inferred rates of male–mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male–mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos.  相似文献   

14.
The origin of Plasmodium falciparum, the etiological agent of the most dangerous forms of human malaria, remains controversial. Although investigations of homologous parasites in African Apes are crucial to resolve this issue, studies have been restricted to a chimpanzee parasite related to P. falciparum, P. reichenowi, for which a single isolate was available until very recently. Using PCR amplification, we detected Plasmodium parasites in blood samples from 18 of 91 individuals of the genus Pan, including six chimpanzees (three Pan troglodytes troglodytes, three Pan t. schweinfurthii) and twelve bonobos (Pan paniscus). We obtained sequences of the parasites'' mitochondrial genomes and/or from two nuclear genes from 14 samples. In addition to P. reichenowi, three other hitherto unknown lineages were found in the chimpanzees. One is related to P. vivax and two to P. falciparum that are likely to belong to distinct species. In the bonobos we found P. falciparum parasites whose mitochondrial genomes indicated that they were distinct from those present in humans, and another parasite lineage related to P. malariae. Phylogenetic analyses based on this diverse set of Plasmodium parasites in African Apes shed new light on the evolutionary history of P. falciparum. The data suggested that P. falciparum did not originate from P. reichenowi of chimpanzees (Pan troglodytes), but rather evolved in bonobos (Pan paniscus), from which it subsequently colonized humans by a host-switch. Finally, our data and that of others indicated that chimpanzees and bonobos maintain malaria parasites, to which humans are susceptible, a factor of some relevance to the renewed efforts to eradicate malaria.  相似文献   

15.
Research on age-related changes in morphology, social behavior, and cognition suggests that the development of bonobos (Pan paniscus) is delayed in comparison to chimpanzees (Pan troglodytes). However, there is also evidence for earlier reproductive maturation in bonobos. Since developmental changes such as reproductive maturation are induced by a number of endocrine processes, changes in hormone levels are indicators of different developmental stages. Age-related changes in testosterone excretion are an indirect marker for the onset of puberty in human and non-human primates. In this study we investigated patterns of urinary testosterone levels in male and female bonobos and chimpanzees to determine the onset of puberty. In contrast to other studies, we found that both species experience age-related changes in urinary testosterone levels. Older individuals of both sexes had significantly higher urinary testosterone levels than younger individuals, indicating that bonobos and chimpanzees experience juvenile pause. The males of both species showed a similar pattern of age-related changes in urinary testosterone levels, with a sharp increase in levels around the age of eight years. This suggests that species-differences in aggression and male mate competition evolved independently of developmental changes in testosterone levels. Females showed a similar pattern of age-related urinary testosterone increase. However, in female bonobos the onset was about three years earlier than in female chimpanzees. The earlier rise of urinary testosterone levels in female bonobos is in line with reports of their younger age of dispersal, and suggests that female bonobos experience puberty at a younger age than female chimpanzees.  相似文献   

16.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Of the living apes, the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) are often presented as possible models for the evolution of hominid bipedalism. Bipedality in matched pairs of captive bonobos and chimpanzees was analyzed to test hypotheses for the evolution of bipedalism, derived from a direct referential model. There was no overall species difference in rates of bipedal positional behavior, either postural or locomotory. The hominoid species differed in the function or use of bipedality, with bonobos showing more bipedality for carrying and vigilance, and chimpanzees showing more bipedality for display.  相似文献   

18.
Size variation in African apes (Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) is substantial, both within and between species. We investigate the possible evolutionary significance of this variation through an analysis of the ontogeny of size variation in this group. In addition, we highlight possible areas of future endocrinological research, and evaluate recently proposed alternative models that attempt to account for ontogenetic variation in apes. The present study shows that intergeneric variation in size is largely a consequence of differences among species in the rate of body weight growth. Interspecific size variation in Pan is a product of both rate and duration differences in growth. The ontogenetic bases of sexual dimorphism vary in this group. Dimorphism is largely a result of sex differences in the duration of body weight growth in gorillas and pygmy chimpanzees, but results from differences in the rate of growth in common chimpanzees. Ontogenetic analyses largely confirm earlier interpretations, but with better data and methods. The great degree of ontogenetic variation within and among these species, especially in the timing and magnitude of “pubertal” growth spurts, implies that studies of endocrine growth control in African apes could be a productive line of future research. We also suggest that ontogenetic variation can be understood with respect to ecological risks. Growth rates seem to be negatively correlated with ecological risk in African apes, suggesting links between ontogenetic patterns and social and ecological variables. High growth rates in gorillas compared to Pan are most consistent with this model. Variation between chimpanzees and pygmy chimpanzees (especially females) also seem to fit predictions of this model. © 1996 Wiley-Liss, Inc.  相似文献   

19.
This study examines variability in masticatory morphology as a function of dietary preference among the African apes. The African apes differ in the degree to which they consume leaves and other fibrous vegetation. Gorilla gorilla beringei, the eastern mountain gorilla, consumes the most restricted diet comprised of mechanically resistant foods such as leaves, pith, bark, and bamboo. Gorilla gorilla gorilla, the western lowland gorilla subspecies, consumes leaves and other terrestrial herbaceous vegetation (THV) but also consumes a fair amount of ripe, fleshy fruit. In contrast to gorillas, chimpanzees are frugivores and rely on vegetation primarily as fallback foods. However, there has been a long-standing debate regarding whether Pan paniscus, the pygmy chimpanzee (or bonobo), consumes greater quantities of THV as compared to Pan troglodytes, the common chimpanzee. Because consumption of resistant foods involves more daily chewing cycles and may require larger average bite force, the mechanical demands placed on the masticatory system are expected to be greater in folivores as compared to primates that consume large quantities of fleshy fruit. Therefore, more folivorous taxa are predicted to exhibit features that improve load-resistance capabilities and increase force production. To test this hypothesis, jaw and skull dimensions were compared in ontogenetic series of G. g. beringei, G. g. gorilla, P. t. troglodytes, and P. paniscus. Controlling for the influence of allometry, results show that compared to both chimpanzees and bonobos, gorillas exhibit some features of the jaw complex that are suggestive of improved masticatory efficiency. For example, compared to all other taxa, G. g. beringei has a significantly wider mandibular corpus and symphysis, larger area for the masseter muscle, higher mandibular ramus, and higher mandibular condyle relative to the occlusal plane of the mandible. However, the significantly wider mandibular symphysis may be an architectural response to increasing symphyseal curvature with interspecific increase in size. Moreover, Gorilla and Pan do not vary consistently in all features, and some differences run counter to predictions based on dietary variation. Thus, the morphological responses are not entirely consonant with predictions based on hypothesized loading regimes. Finally, despite morphological differences between bonobos and chimpanzees, there is no systematic pattern of differentiation that can be clearly linked to differences in diet. Results indicate that while some features may be linked to differences in diet among the African apes, diet alone cannot account for the patterns of morphological variation demonstrated in this study. Allometric constraints and dental development also appear to play a role in morphological differentiation among the African apes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号