首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidally induced fluctuations and transports of microfungi were investigated. Samples were collected at three depths from three stations positioned at a transect in a large salt marsh creek. Samples were taken every 1.5 h for 50 consecutive h during neap tides and 50 consecutive h during the corresponding spring tides. In each season, microfungi concentrations fluctuated out of phase with the tides during both neap and spring tides. Mean concentrations of suspended microfungi did not vary appreciably throughout the year. Fungi were exported from the marsh during the majority of the tidal cycles studied. The results suggest that microfungi may serve as indicators of water mass movements.  相似文献   

2.
Macrophytes drive the functioning of many salt marsh ecosystem components. We questioned how temporary clearing of the macrophyte community, during restoration, would impact processes at the scale of the aquatic surface microlayer. Development, deposition, and breakup of the tidal creek surface microlayer were followed over tidal cycles seasonally in a cleared “former” Phragmites marsh and an adjacent restored Spartina marsh. Metabolic and physical processes of the mobile surface microlayers and underlying water were compared, along with distribution of organic and inorganic components onto simulated plant stems. In July and October, chlorophyll-a quantities were less on simulated stems in the cleared site than in the restored site. The aquatic microlayer in the cleared site creek exhibited lower photosynthesis and respiration rates, fewer diatoms and green algae, and less chlorophyll-a. There was a lower concentration (250 times) and reduced diversity of fatty acids in the surface microlayer of the cleared site, reflecting a smaller and less diverse microbial community and reduced food resources. Fiddler crab activity was an order of magnitude higher where macrophytes had been cleared. Their consumption of edaphic algae on the mud surface may account for the reduced algae and other organics in the creek surface microlayer, thus representing a redirection of this food resource from creek consumers. Overall, there were less total particulates in the creek surface microlayer at the cleared site, and they dropped out of the surface microlayer sooner in the tidal cycle, resulting in a lower sediment load available for deposit onto marsh surfaces.  相似文献   

3.
Tidal fluctuations and transports of total microbial biomass (measured as adenosine triphosphate [ATP]) were investigated at three marsh creeks comprising the major transfer points between the North Inlet marsh and the adjoining aquatic ecosystems. Two creeks, Town Creek and North Jones Creek, form the inlet mouth and are the only marsh-ocean exchange points. The third creek, South Jones Creek, connects to a brackish water embayment. The creeks were simultaneously sampled every 1.5 hours for 50 consecutive hours during neap tides (four tidal cycles) and 50 consecutive hours during spring tides of each season. At the inlet, ATP concentration fluctuated in phase with the tide during winter and fall and out of phase with the tide during the spring. Fluctuation patterns at South Jones Creek were irregular. The highest ATP concentrations were during the spring (mean=2.17 mg of ATP per m3) and the lowest concentrations were during the winter (mean=0.65 mg of ATP per m3). Net transports of ATP varied from tidal cycle to tidal cycle with regard to direction of transport (import or export) and magnitude. Net transports were small compared to large instantaneous transports and only 4 of 22 determinations of net transport were different from zero transport.  相似文献   

4.
We model the dynamics of a tidal creek — mangrove swamp system. In the creek, a tidal asymmetry prevails. The ebb flow dominance at spring tides helps flush out the coarse sediment from the creek. Results from the numerical model suggest that the ebb dominance is due to friction in the mangrove forest and in turn this is controlled by the density of the vegetation. The tidal asymmetry of the current is negligible for a very small or a very large vegetation density, and is maximum for an intermediate vegetation density typical of that in undisturbed healthy mangroves.  相似文献   

5.
We examined the net exchange of total mercury (THg) and methylmercury (MeHg) between a tidal marsh and its adjacent estuary over a 1-year period from August 2007 to July 2008. Our objectives were to estimate the importance of tidal salt marshes as sources and sinks of mercury within the Chesapeake Bay system, and to examine the hydrologic and biogeochemical controls on mercury fate and transport in tidal marshes. Tidal flows and water chemistry were measured at an established tidal flume at the mouth of the principal tidal creek of a 3-ha marsh section at the Smithsonian Environmental Research Center. Fluxes were estimated by combining continuous tidal flow measurement for the entire study year, with discrete, hourly, flow-weighted measurements of filterable and particulate THg and MeHg, dissolved organic carbon (DOC), and suspended particulate matter (SPM) made over 20 tidal cycles during the year. We found that the marsh was a relatively small net tidal source of MeHg, mainly during the warmer growing season. We also confirmed that the marsh was a substantial source of DOC to the adjacent estuary. DOC was a significant predictor of both filterable THg and MeHg fluxes. However, although the marsh was a source of filterable THg, it was overall a net sink for THg because of particulate trapping. The net per-area annual flux of MeHg from tidal marshes is greater than other MeHg pathways within Chesapeake Bay. The annual load of MeHg from tidal marshes into Chesapeake Bay, however, is likely small relative to fluvial fluxes and efflux from bottom sediment. This study suggests that MeHg production within the tidal marsh has greater consequences for biota inhabiting the marsh than for the efflux of MeHg from the marsh.  相似文献   

6.
The temporal distribution and abundance of penaeid prawn larvae in surface waters of Tudor creek were studied. Only late mysis and early post mysis stages of development were encountered in the creek waters with a descending gradient from the mouth station (station 1) to the innermost station 5. Larval encounter incidence (% incidence) was highest in plankton tows taken during night spring tides (59%) followed by night neap tides (45.4%), day spring tides (34.9%) and day neap tides (21.4%). This encounter incidence was more skewed towards the seaward stations (1 and 2) during the neap tides than during spring tides. Likewise, larval density (mean catch/standard 5 min. tow) decreased less steeply up the creek during spring tides than it did during neap tides. Higher catch rates were in general obtained in night samples than in day samples at each station and in each neap/spring phase. The diel cycle had a greater effect on both incidence and abundance of larvae than did the tidal cycle.Intensified larval incursion into the creek was observed between March and June.  相似文献   

7.
Although water in mangrove sediments influences nutrient cycling in both, mangrove forest and estuary, little information exists on seasonal and vertical distribution of dissolved organic and inorganic compounds in the sediment column. We studied the influence of sediment texture and chemistry, permeability (K), tides, and rainfall on dissolved organic carbon (DOC) and nitrogen (DON), dissolved inorganic phosphate (DIP) and salinity in creek and sediment waters of a mangrove in Pará, Brazil. Water samples were taken from boreholes and piezometers in the mangrove forest and from an adjacent tidal creek at neap and spring tides, during the dry and rainy season. Forest sediment was analysed for carbon (C), nitrogen (N), salinity and permeability. Clay, C and N decreased with depth. Sediment permeability (K) was lowest (<0.1 m day−1) in the upper, clay-rich and crab-burrow-free mud layer. In the deeper, fine sand strata, K ranged from 0.7 to 1.8 m day−1. Tidal range in the creek was 3.5 and 5.5 m for neap and spring tides, respectively. Salinity, DOC, DON and DIP in creek water were inversely related to tidal height. Piezometer data revealed significant water level changes in deeper, sandy sediment layer, which followed, time-lagged, the tidal fluctuations. In contrast, tide did not affect the water level in the upper sediment due to low permeability. Compared with creek water, sediment water was enriched in DOC, DON and DIP because of organic matter input and mineralization. In deeper layers, solute concentration was most likely affected by sorption processes (DOC and DIP) and reduction reactions (DIP). During the rainy season, DOC and DON in creek and sediment water were higher than in the dry season. DIP appeared invariant to seasonal changes. In the rainy season, salt flushing from surface sediments resulted in higher salinities at intermediate sediment depths, while in the deeper layers salinity was lower due to exchange with water from the tidal creek.  相似文献   

8.
Summary

The flux of dissolved inorganic nutrients (NH4-N, NO2-N, NO3-N, SRP) and suspended particulates (particulate organic carbon POC, and particulate inorganic carbon PIC) was measured across the mouth of a small creek draining a portion of the intertidal Spartina salt marsh in the Swartkops estuary. Direct measurements of constituent concentration, the volume of water flowing into and out of the creek basin at discrete time intervals, and tidal height were made over full spring tide cycles on a two-weekly basis during a 12 month study period. Results show that the marsh acts as a sink for NH4-N, NO2-N, and NO3-N on an annual basis, but exports soluble reactive phosphate to the contiguous estuarine waters. The marsh also imports nominal amounts of suspended POC and PIC (<1.5 mm in size), but apparently exports larger detrital particles (>1.5 mm) on ebb tides to the estuary. It is concluded that the marsh retains and utilizes most of its own production and functions virtually as an independent ecosystem.  相似文献   

9.
Functional responses of estuarine fish species to environmental perturbations such as wetland impoundment, changes in water quality, and sediment accretion are investigated. The study focuses on the feeding, growth and habitat use by California killifish (Fundulus parvipinnis), topsmelt (Antherinops affinis), and juvenile California halibut (Paralichthys californicus) in impacted coastal wetlands to provide an ecological basis for guidance on the management and restoration of these ecosystems. The ecology of California killifish, Fundulus parvipinnis, is closely tied with the marsh surface, which they access at high tide to feed and grow. Field estimates of food consumption show that killifish can increase their food intake by two-fold to five-fold by adding marsh surface foods to their diet. Bioenergetics modeling predicts that killifish can grow over an order of magnitude faster if they add intertidal marsh surfaces to their subtidal feeding areas. Tidal inlet closures and increased marsh surface elevations due to sediment accretion can restrict killifish access to the marsh surface, affecting its growth and fitness. An open tidal inlet and tidal creek networks that allow killifish to access the marsh at high tide must be incorporated into the restoration design. Topsmelt and California halibut are also adversely affected by tidal inlet closures. Food consumption rates of topsmelt are 50% lower when the tidal inlet is closed, compared to when the estuary is tidally-flushed. Tidal inlet closures inadvertently induce variations in water temperature and salinity and negatively affect growth of juvenile California halibut. Tidal creek networks which consist of channels and creeks of various orders are also important to halibut. Large halibut (>200 mm TL) inhabit deeper, high order channels for thermal refuge, while small halibut (<120 mm TL) are abundant in lower order channels where they can feed on small-sized prey which are typically less abundant in high order channels. Maintaining an open tidal inlet, implementing sediment management programs and designing coastal wetlands with tidal creek networks adjacent to intertidal salt marsh habitat (for fish access) are key elements that need to be considered during the planning and implementation of coastal wetland restoration projects.  相似文献   

10.
Because of land reclamation, reinforcement of dikes, and the deepening of shipping channels, large areas of tidal marshes have been removed or eroded from the Scheldt estuary during the last two centuries. Tidal wetland restoration contributes toward compensating this loss of habitat. Not all restoration projects are meticulously planned, however; some are forced by nature. During a severe storm in 1990, a dike was breached in the brackish part of the Scheldt estuary and returned tidal influence to the Sieperda polder. In the 10 years since the dike breach, the former polder has changed into a brackish tidal marsh. Here we report on the geomorphologic and ecological developments that have taken place in the marsh. Tidal intrusion into the former polder turned crop fields into mudflats and changed pastures into salty marsh vegetation. The digging of a new creek improved marsh hydrology and enhanced tidal intrusion further into the marsh. Macrofauna typical of estuarine mudflats established rapidly in the developing marsh. Vegetation succession took place rapidly. Within 5 years, large areas of mudflats became covered with marsh vegetation. Birds characteristic of salt marshes were observed breeding or seen foraging in the marsh. The number of wading birds declined as areas of mudflat became overgrown. It is demonstrated that tidal flow is the engine to tidal marsh restoration. Tidal influence caused geomorphologic changes, which directed ecological developments in the former polder.  相似文献   

11.
潮沟是潮滩上发育典型的地貌因子,是潮滩演变的重要标志。米草植被的发育与扩张,改变了潮流的动力特征和滩面物质组成,从而形成了特殊的米草潮沟系统。采用实地调查与遥感影像相结合的方法,分析了湿地潮沟的整体形态特征,并重点对米草潮沟系统的形态特征及成因进行了系统分析。结果表明:①受潮流和地形作用的控制,本区并无大型潮沟分布,潮沟规模从北至南依次增大,发育高程为0—1.8 m。盐沼和光滩上潮沟形态截然不同。②米草潮沟系统具有独特特征:潮沟多窄而深、密度大、分级多、侧向迁移小于纵向迁移、宽深比较小;潮沟两侧发育高度不等的不对称性的沿岸堤;盐沼边缘发育有陡坎和冲沟,并贯穿整个米草带。③潮沟的发育是影响米草向内陆碱蓬区扩张的因素之一,起着非常重要的引领作用,而米草陆向扩张的宽度和幅度取决于所在区域潮沟的发育程度。同时,随米草扩张速度的降低,光滩上潮沟的活动性有所放缓。  相似文献   

12.
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.  相似文献   

13.
Temporal patterns of larval occurrence of brachyuran taxa weredescribed from Saco mangrove creek, Mozambique, based on planktonsamples. Brachyuran larvae were collected hourly in four 24h cycles during neap and spring tidal periods at a fixed station,in November 1997 and February 1998. Results indicate a semilunarcycle of larval release activity for most species. Newly-hatchedstages of sesarmids showed a peak occurrence in post-crepuscularebbing tides, Macrophthalmus spp. and Uca spp. showed highestdensities during ebbing tides at night. Dotilla fenestrata andPinnotheridae, in spite of showing a semilunar pattern, didnot display significant differences between day and night. Mostmangrove taxa showed thus a clear larval exportation behaviourduring ebb tides, with little return during the following floods,with varying degrees of dependence on the diel period. Megalopaewere restricted to the night period, and highest values wereobtained during spring tidal periods. However, maximum valuesof megalopae were obtained both during flood and ebb periods,contrary to most previous studies. This is interpreted as abi-directional transport of non-competent megalopae into andfrom the mangrove area.  相似文献   

14.
A digital elevation model describing topography, tide elevation and inundation degree and frequency of a mangrove forest in North Brazil is discussed in relation to existing phosphate and physicochemical data in waters of an adjacent tidal creek. Due to smooth topography, an increase of 20 cm in tidal height above average neap tides increases flooded area from about 50 to 80%. Analysis of the relationship between microtopography, tidal height and flooding rate showed that in the upper 60 cm of the mangrove forest, increases of 20 cm in topographical height resulted in a doubling of the inundation frequency. This can be particularly relevant for the analysis of nutrient mobilization and vegetation structure of infrequently inundated wetlands. Throughout the year, low-tide phosphate in creek water was inversely proportional to the maximum area flooded during high tide, this correlation being higher during the dry season. Similarly, the inverse relationship between flooded areas and low-tide/high-tide pH ratios was highly significant during the dry season and the beginning of the rainy season. Although the high correlations obtained are based on data pairs obtained at high and low tide, it has to clarified whether the association between inundation degree and creek water pH is relevant for the stability of P compounds in sediment on the short scale of a tidal cycle.  相似文献   

15.
Environmental conditions in salt marsh creeks are intermediate between the open tidal coast and estuaries. A large salt marsh creek at the island of Sylt (North Sea) was studied in order to test whether its fauna is more similar to that of the open tidal coast or to that of estuaries. Because of a sandy bar at the seaward opening, the tidal range is only 10 cm in the creek, and the water level never drops below the level of the sand bar. Zoobenthos in the sandy bottom and on the sandy shores was studied at both ends and in the middle of the creek. Polychaeta and Plathelminthes were determined to species level. On an average, 2115 metazoans were found below 10 cm2 of surface area. At the seaward end of the creek, abundance and taxonomic composition are similar to that of the adjoining Wadden area. Nematoda are the dominant taxon, followed by Copepoda, Plathelminthes and Oligochaeta. Taxonomic composition is different at the landward end. Plathelminthes and Nematoda are most abundant followed by Copepoda. Both Oligochaeta and Polychaeta are scarce at these newly eroded sites. Plathelminth abundance at the landward end of the creek is exceptionally high (770–935·10 cm−2). Contrary to what is generally found in estuaries, the species density of Plathelminthes shows a significant increase toward the land. The species composition of Polychaeta and Plathelminthes indicates that the sites below mean high tide level of the creek correspond to the adjacent eulittoral Wadden area while the fauna of the supralittoral sites of the creek is similar to the fauna of supralittoral tidal coasts. Typical sublittoral species did not occur in the salt marsh creek. Thus, salt marsh creeks may be regarded as a small-scale model for the tidal coast. In context with the results obtained, the definition of estuaries is discussed.  相似文献   

16.
潮汐作用作为盐沼湿地独特的水文特征能在短时间内强烈影响盐沼湿地的碳平衡.利用涡度相关和微气象监测技术,对黄河三角洲盐沼湿地净生态系统CO2交换(NEE)和环境因子进行监测,并同步监测潮汐变化,探究潮汐过程及潮汐作用下干湿交替对NEE的影响.结果表明: 潮汐过程促进了白天生态系统CO2的吸收但未对夜晚CO2的释放产生显著影响,潮汐淹水成为影响白天NEE的主要因子.干旱阶段和湿润阶段NEE的日平均动态均呈“U”型曲线,但干旱阶段NEE的变幅较小.干湿交替增强了白天生态系统CO2的吸收,干旱阶段最大光合速率(Amax)、表观量子产量(α)和生态系统呼吸(Reco)的均值均高于湿润阶段.此外,干湿交替减少了盐沼湿地夜晚NEE释放的同时增强了其温度敏感性.  相似文献   

17.
潮汐作用作为盐沼湿地独特的水文特征能在短时间内强烈影响盐沼湿地的碳平衡.利用涡度相关和微气象监测技术,对黄河三角洲盐沼湿地净生态系统CO2交换(NEE)和环境因子进行监测,并同步监测潮汐变化,探究潮汐过程及潮汐作用下干湿交替对NEE的影响.结果表明: 潮汐过程促进了白天生态系统CO2的吸收但未对夜晚CO2的释放产生显著影响,潮汐淹水成为影响白天NEE的主要因子.干旱阶段和湿润阶段NEE的日平均动态均呈“U”型曲线,但干旱阶段NEE的变幅较小.干湿交替增强了白天生态系统CO2的吸收,干旱阶段最大光合速率(Amax)、表观量子产量(α)和生态系统呼吸(Reco)的均值均高于湿润阶段.此外,干湿交替减少了盐沼湿地夜晚NEE释放的同时增强了其温度敏感性.  相似文献   

18.
The longitudinal distributions of dissolved oxygen change dramatically during neap-spring tidal cycles in the lower Selangor and Klang Rivers. An oxygen deficit develops in both estuaries when the tidal range is high. The Selangor River inflow is nearly saturated with D.O., but during spring tides D.O. falls to as little as 15% of saturation in the middle reaches of the estuary. The Klang River has low D.O. freshwater input, an oxygen minimum develops during neap tides, and anoxic conditions are produced by spring tides. These oxygen minima are attributed to the high oxygen demand of sediment that rests on the bottom during neap tides and is resuspended during spring tides. The ecological effects of tidal cycling patterns of dissolved oxygen in these Malaysian estuaries need further study, within the context of land use patterns and other human activities.  相似文献   

19.
Within isolated and fragmented populations, species interactions such as predation can cause shifts in community structure and demographics in tidal marsh ecosystems. It is critical to incorporate species interactions into our understanding when evaluating the effects of sea‐level rise and storm surges on tidal marshes. In this study, we hypothesize that avian predators will increase their presence and hunting activities during high tides when increased inundation makes their prey more vulnerable. We present evidence that there is a relationship between tidal inundation depth and time of day on the presence, abundance, and behavior of avian predators. We introduce predation pressure as a combined probability of predator presence related to water level. Focal surveys were conducted at four tidal marshes in the San Francisco Bay, California where tidal inundation patterns were monitored across 6 months of the winter. Sixteen avian predator species were observed. During high tide at Tolay Slough marsh, ardeids had a 29‐fold increase in capture attempts and 4 times greater apparent success rate compared with low tide. Significantly fewer raptors and ardeids were found on low tides than on high tides across all sites. There were more raptors in December and January and more ardeids in January than in other months. Ardeids were more prevalent in the morning, while raptors did not exhibit a significant response to time of day. Modeling results showed that raptors had a unimodal response to water level with a peak at 0.5 m over the marsh platform, while ardeids had an increasing response with water level. We found that predation pressure is related to flooding of the marsh surface, and short‐term increases in sea levels from high astronomical tides, sea‐level rise, and storm surges increase vulnerability of tidal marsh wildlife.  相似文献   

20.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号