首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of homogeneous rat liver sterol carrier protein2 (SCP2) or an adrenal cytosolic fraction enhanced pregnenolone production by adrenal mitochondria. Pretreatment of SCP2 or adrenal cytosol with anti-SCP2 IgG abolished the stimulatory effect of both preparations on mitochondrial pregnenolone output. Incubation of mitochondria with aminoglutethimide, which blocks interaction of cholesterol with inner membrane cytochrome P-450scc, resulted in decreased pregnenolone production and a decreased level of mitoplast cholesterol. Addition of SCP2 to the incubation media caused an almost 2-fold increase in cholesterol associated with the mitoplast, but did not enhance mitochondrial pregnenolone production. Studies with reconstituted cytochrome P-450scc in phospholipid vesicles also suggested that SCP2 did not affect interaction of cholesterol with the hemoprotein. Treatment of rats with cycloheximide alone or with adrenocorticotropic hormone resulted in a dramatic increase in mitochondrial cholesterol. However, these mitochondria did not exhibit increased levels of pregnenolone output under control incubation conditions. When SCP2 was included in the mitochondrial incubation media, pregnenolone production was significantly increased over that observed with adrenal mitochondria from untreated or adrenocorticotropic hormone-treated rats. The results imply that SCP2 enhances mitochondrial pregnenolone production by improving transfer of mitochondrial cholesterol to cytochrome P-450scc on the inner membrane, but does not directly influence the interaction of substrate with the hemoprotein.  相似文献   

2.
Rat adrenocortical cells and preparations of plasma membrane and mitochondria have been employed to assess the effects of phospholipids and of sterol carrier protein2 (SCP2) on specific aspects of adrenal steroidogenesis. With intact cells, liposomal dispersions of cardiolipin caused significant stimulation of corticosterone output, while preparations of phosphatidylcholine, phosphatidylinositol, or the 4'-phosphate and the 4',5'-diphosphate derivatives of phosphatidylinositol were without effect. With the adrenal plasma membrane preparation, none of the added phospholipids affected either sodium fluoride or ACTH-responsive adenylate cyclase activity. With intact mitochondria, only cardiolipin, among the various phospholipids, tested, caused a concentration-dependent stimulation of pregnenolone production. However, even at the highest concentration of cardiolipin tested (500 microM), the stimulatory effect was only half that observed with 0.7 microM SCP2, and the two effectors were not synergistic. SCP2 caused a redistribution of cholesterol from mitochondrial outer to inner membranes, while cardiolipin, which is an activator of cytochrome P-450scc, had no effect on distribution of mitochondrial membrane cholesterol.  相似文献   

3.
The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or transport fatty acid. The results described in the present review support the concept that intracellular lipid transfer is a highly specific process, far more substrate-specific than suggested by the earlier studies conducted using liposomal techniques.  相似文献   

4.
Sterol carrier protein2 (SCP2) is known to stimulate utilization of cholesterol in enzymic reactions in which cholesterol is the substrate. Substantial recent experimental evidence indicates that SCP2: activates enzymic conversion of intermediates between lanosterol and cholesterol; stimulates the microsomal conversion of cholesterol into cholesterol ester in rat liver; and enhances mitochondrial utilization of cholesterol for pregnenolone formation in the adrenals. The conversion of cholesterol into 7 alpha-hydroxycholesterol is the rate-limiting step in bile-acid synthesis. We therefore investigated the effect of SCP2 on this physiologically critical reaction by using a gas-chromatography-mass-spectrometry procedure that measures the mass of 7 alpha-hydroxycholesterol formed. The results show that SCP2 enhances 7 alpha-hydroxycholesterol formation by rat liver microsomes (microsomal fractions), utilizing either endogenous membrane cholesterol, cholesterol supplied exogenously in serum or in the form of cholesterol/phospholipid liposomes. Microsomes immunotitrated with anti-SCP2 antibody exhibited considerably less capacity to synthesize 7 alpha-hydroxycholesterol, which was restored to control levels on addition of purified SCP2. These data are consistent with the suggestion that SCP2 may be of physiological significance in the overall metabolism of cholesterol.  相似文献   

5.
Sterol carrier protein2-like activity in rat intestine   总被引:1,自引:0,他引:1  
A sterol carrier protein2 (SCP2)-like activity has been demonstrated in rat intestinal mucosal homogenates and in isolated intestinal cells from both crypt and villus zones. The results indicate the presence of a protein with similar molecular weight and antigenicity to that of authentic SCP2 purified from rat liver cytosol. Like liver SCP2, mucosal cytosol stimulates pregnenolone production in rat adrenal mitochondria and acyl coenzyme A:cholesterol acyltransferase activity of liver and mucosal microsomes. The distribution of SCP2-like activity as determined by radioimmunoassay indicates high levels in mitochondria and cytosol and relatively lower levels in microsomes and in brush-border membranes. The widespread distribution of SCP2-like protein in the intestine is consistent with potential transfer functions in all phases of cholesterol processing.  相似文献   

6.
Cholesterol side-chain cleavage (CSCC) in isolated rat adrenal mitochondria is enhanced by prior corticotropin (ACTH) stimulation in vivo (8-fold). Part of this stimulation is retained in vitro by addition of cytosol from ACTH-stimulated adrenals to mitochondria from unstimulated rats (2.5- to 6-fold). In vivo cycloheximide (CX) treatment fully inhibits the in vivo response and resolves the in vitro cytosolic stimulation into components: (i) ACTH-sensitive, CX-sensitive; (ii) ACTH-sensitive, CX-insensitive; and (iii) ACTH-insensitive, CX-insensitive. These components contribute approximately equally to stimulation by ACTH cytosol. Components (i) and (iii) most probably correspond to previously identified cytosolic constituents steroidogenesis activator peptide and sterol carrier protein 2 (SCP2). SCP2, as assayed by radioimmunoassay or ability to stimulate 7-dehydrocholesterol reductase, was not elevated in adrenal cytosol or other subcellular fractions by ACTH treatment. Complete removal of SCP2 from cytosol by treatment with anti-SCP2 IgG decreased cytosolic stimulatory activity by an increment that was independent of ACTH or CX treatment. Addition of an amount of SCP2, equivalent to that present in cytosol, restored activity to SCP2-depleted cytosol but had no effect alone or when added with intact cytosol, suggesting the presence of a factor in cytosol that potentiates SCP2 action. Pure hepatic SCP2 stimulated CX mitochondrial CSCC 1.5- to 2-fold (EC50 0.7 microM) but was five times less potent than SCP2 in adrenal cytosol. Two pools of reactive cholesterol were distinguished in these preparations characterized, respectively, by succinate-supported activity and by additional isocitrate-supported activity. ACTH cytosol and SCP2 each stimulated cholesterol availability to a fraction of mitochondrial P450scc that was reduced by succinate but failed to stimulate availability to additional P450scc reduced only by isocitrate.  相似文献   

7.
The effects of ACTH or dibutyryl cyclic AMP (Bt2cAMP) on the synthesis of sterol carrier protein-2 (SCP2) have been studied in rat adrenocortical cells in monolayer culture. Radiolabeling of total cellular proteins with [35S]methionine and immunoprecipitation with antibodies directed against rat liver SCP2, followed by polyacrylamide gel electrophoresis and fluorography, showed a 3-4-fold increase in the rate of synthesis of SCP2 in cells treated for 48 h with ACTH (1 microM) or Bt2cAMP (0.1 mM). The induction of SCP2 synthesis depended upon the concentrations of ACTH or Bt2cAMP with an ED50 of 8 and 100 nM, respectively, and increased linearly with time between 12 and 48 h of treatment. Immunoprecipitation of SCP2 synthesized in a rabbit reticulocyte in vitro translation system programmed with RNA isolated from cells treated with ACTH or Bt2cAMP revealed increased synthesis of SCP2 compared to RNA from control cells. The immunoprecipitable rat adrenal SCP2, synthesized in a cell-free translation system, showed mobility corresponding to Mr of 14,400 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was clearly larger than immunodetectable SCP2 synthesized in cultured adrenal cells (Mr = 11,300). The electrophoretic mobilities of rat liver SCP2 synthesized in cultured cells and in a cell-free translation system were the same as the respective forms from rat adrenal. It is concluded that the synthesis of SCP2 in rat adrenocortical cells is induced by ACTH and that the induction is mediated by cAMP and may involve increased levels of translatable mRNA encoding a higher molecular weight precursor form of SCP2, which presumably undergoes post-translational processing yielding the mature form.  相似文献   

8.
We previously reported (Lambeth, J. D., Xu, X. X., and Glover, M. (1987) J. Biol. Chem. 262, 9181-9188) that exogenously added cholesterol sulfate inhibits the conversion of cholesterol to pregnenolone in isolated adrenal mitochondria, and does so by affecting intramitochondrial cholesterol movement but not its subsequent metabolism to pregnenolone by cytochrome P-450scc. We now report that a major kinetic component of the inhibition is noncompetitive with respect to cholesterol, consistent with an allosteric effect at a site other than the substrate binding site of cytochrome P-450scc. We now also report that cholesterol sulfate is present as an endogenous compound in preparations of adrenal mitochondria. Its content varied from 0.05 to 0.8 nmol/mg protein. Cholesterol sulfate level correlated inversely with the mitochondrial cholesterol side-chain cleavage activity. Endogenous cholesterol sulfate thus appeared to account for the variable rates of pregnenolone synthesis which were seen in different mitochondrial preparations. Cholesterol sulfate was metabolized to pregnenolone sulfate by a mitochondrial side-chain cleavage system, but proved to be a relatively poor substrate for an extramitochondrial steroid sulfatase activity present in adrenal cortex. Confirming a role as a naturally occurring inhibitor, removal of endogenous mitochondrial cholesterol sulfate by metabolism to pregnenolone sulfate correlated with a 3-fold activation of cholesterol side-chain cleavage. We suggest that cholesterol sulfate functions in steroidogenic tissues to regulate the magnitude of the steroidogenic response.  相似文献   

9.
Pregnenolone synthesis from cholesterol by adrenal mitochondria isolated from ether-stressed rats exhibits a biphasic time course: upon the addition of a reducing substrate (e.g. malate), a rapid phase of pregnenolone formation occurs during the first 5 min, which has been interpreted as the metabolism of a steroidogenic pool of cholesterol, probably in the inner membrane. A slower rate follows, which is interpreted as translocation of cholesterol into the steroidogenic pool. While a 30-min preincubation of mitochondria with cholesterol alone did not affect the extent of the rapid phase, preincubation with GTP plus cholesterol extended the first phase, resulting in an up to 2-fold increase in pregnenolone synthesis by 20-30 min. The apparent Km for GTP was 0.1-0.4 mM, and stimulation was maximal with preincubation times of 10-30 min, depending upon incubation conditions. Exogenous cholesterol was not required to observe a stimulatory effect, indicating that GTP reorganizes the endogenous mitochondrial cholesterol pools. Nevertheless, stimulation was greater when exogenous cholesterol was provided, consistent with enhanced utilization of both endogenous and exogenous cholesterol. Stimulation by GTP was also seen in mitochondria isolated from cycloheximide-injected/ether-stressed rats, although the activity in these preparations was always lower than that in mitochondria from ether-stressed rats. The stimulation was specific for GTP, since many other nucleotides (e.g. ATP, GDP, and ITP) and GTP analogues (guanosine 5'-O-(3-thiotriphosphate and guanosine 5'-(beta,gamma-imino)triphosphate) had no effect. The GTP-activated state was reversible: after GTP hydrolysis by a mitochondrial GTPase, pregnenolone synthesis returned to the basal level. Sonic disruption of mitochondria abolished the stimulatory effect of GTP. These results suggest that GTP enhances pregnenolone synthesis by promoting the movement of cholesterol to the steroidogenic pool, consistent with a recently proposed general role for GTP in some vectorial transport processes (Bourne, H. R. (1988) Cell 53, 669-671).  相似文献   

10.
The effect of sterol carrier protein2 (SCP2) purified from rat liver on the formation of cholesterol esters by acyl-CoA: cholesterol acyl-transferase (ACAT: EC 2.3.1.26) in rat adrenal microsomes was studied. The rate of incorporation of [1-14C]oleoyl-CoA into cholesteryl oleate was determined in the presence or absence of exogenously added cholesterol or SCP2, or both. The addition of SCP2 had no effect on the formation of cholesterol esters from endogenous cholesterol by ACAT in rat adrenal microsomes. In contrast, the formation of cholesterol esters from exogenous cholesterol by ACAT was dose-dependently increased by the addition of SCP2. These experiments showed that SCP2 had an enhancing effect on cholesterol esterification by ACAT in rat adrenal microsomes most likely by modulating the availability of exogenous cholesterol and that SCP2 may participate in the formation of cholesterol esters in the rat adrenal gland.  相似文献   

11.
The rate of oxidation of cholesterol and its analogues to pregnenolone (3beta-hydroxypregn-5-en-20-one) by various mitochondrial preparations was measured. Sterols with the cholest-5-en-3beta-ol ring system and saturated side chains of different lengths were converted into pregnenolone rat rates similar to that of cholesterol. This marked lack of mitochondrial specificity towards the steroid side chains is in direct contrast with the rat liver microsomal cholesterol 7alpha-hydroxylase, which has a high specificity for the side chain. Steroids that retain the ring system, but contain hydroxyl groups at various points in the side chain, are converted into pregnenolone at rates three to eight times higher than in cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol. The results are discussed with reference to current ideas on the mechanism of the side-chain cleavage of cholesterol.  相似文献   

12.
Following simple homogenization, substantial desmolase activity is recovered in rat adrenal 105 000 × g supernatant. The desmolase complex sediments at 3–4 S on sucrose gradients, is found in the clear cytosol, requires NADPH, is derived from mitochondria and is inhibited by aminoglutethimide and pregnenolone. The lipid fraction contains little or no desmolase activity but greatly enhances pregnenolone synthesis in soluble desmolase preparations, presumably by supplying free cholesterol substrate. Prior adrenocorticotropin (ACTH) administration enhances pregnenolone synthesis in the 105 000 × g supernatant, and cycloheximide, an inhibitor of adrenal protein synthesis, does not block this effect of ACTH (but rather potentiates it). The ACTH effect may be largely explained by an increase in free cholesterol, which enhances the activity of both the lipid fraction and clear cytosol, since: free cholesterol levels are increased by ACTH, particularly with cycloheximide pretreatment; type I and inverted type I difference spectrum changes, indicating greater cholesterol availability for binding to cytochrome P-450, are enhanced by ACTH with or without cycloheximide treatment; cholesterol-rich lipid fraction enhances such spectral changes and obliterates the differences in spectral and pregnenolone-synthesizing activities betwen control and ACTH-stimulated soluble desmolase preparations; and desmolase stimulatory properties of clear cytosol co-chromatographs with [14C]cholesterol. Since cycloheximide blocks ACTH-induced effects in intact mitochondria but not in the soluble desmolase preparation, it is postulated that the labile protein required during ACTH action functions to overcome a ?restraining influence’ which is present in intact mitochondria but not in the soluble desmolase system. The ‘restraining influence’ may be due to limited cholesterol-desmolase interaction.  相似文献   

13.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

14.
Rat adrenal 105,000 g supernatant contains two lipid moieties, 'lipid-I' and 'lipid-II' which contain non-esterified cholesterol and stimulate cholesterol side-chain cleavage in soluble or mitochondrial enzyme systems. Lipid-I contains relatively large low-density heat-stable particles, whereas lipid-II particles are smaller, more dense and heat-labile. Lipid-I and lipid-II can be separated from clear cytosol by ultracentrifugation and gel filtration respectively. Corticotropin plus cycloheximide treatment increases the non-esterified cholesterol concentrations in the lipid fractions, and stimulatory effects of lipids on cholesterol side-chain cleavage appear to correlate with non-esterified cholesterol concentrations therein. On addition of saturating amounts of cholesterol-rich lipid, pregnenolone synthesis and cholesterol binding to cytochrome P-450 are stimulated more in mitochondria from corticotropin-stimulated adrenals than in mitochondria from control or corticotropin-plus cycloheximide-stimulated adrenals. These results support the contention that the corticotropin-induced increase in mitochondrial cholesterol side-chain cleavage involves an increase in cholesterol utilization as well as an increase in cholesterol availability.  相似文献   

15.
A goat antibody produced against bovine adrenal ferredoxin has been employed to establish immunochemically the involvement of adrenal ferredoxin in the cholesterol side-chain cleavage reaction catalyzed by mammalian adrenal mitochondria. When added to preparations of bovine adrenocortical mitochondria, this antibody was found to inhibit the conversion of cholesterol to pregnenolone and progesterone, the 11β-hydroxylation of deoxycorticosterone and the NADPH-dependent reduction of cytochrome c. These observations demonstrate that, similar to the NADPH-cytochrome c reductase and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the oxidative cleavage of the cholesterol side-chain catalyzed by bovine adrenocortical mitochondria.The goat antibody to bovine adrenal ferredoxin was also found to interact with the comparable iron-sulfur proteins present in mitochondria prepared from sheep, rat, mouse, cat, dog, guinea pig, rabbit, and human adrenals. The interaction of the antibody with these iron-sulfur proteins resulted in the inhibition of both the cholesterol side-chain cleavage and NADPH-cytochrome c reductase activities catalyzed by these adrenal mitochondria. The NADH-dependent reduction of cytochrome c catalyzed by mammalian adrenal mitochondria was not inhibited by the goat antibody to adrenal ferredoxin. These results demonstrate the immunochemical similarity existing among mammalian adrenal ferredoxins and their involvement in the adrenal cholesterol side-chain cleavage reaction.  相似文献   

16.
17.
The conversion of the 30-carbon atom sterol, lanosterol, to cholesterol by a series of membrane-bound rat liver enzymes requires one major soluble protein called squalene and sterol carrier protein (SCP). This homogenous low-molecular-weight liver protein was previously known to function with membrane-bound enzymes catalyzing cholesterol synthesis from 27-carbon atom precursor sterols. To define characteristics of the multienzyme system catalyzing lanosterol metabolism and the role of SCP in this process, a rapid spectroscopic assay was developed, i.e., formation of Δ5,7-cholestadienol from lanosterol. In addition to SCP, the cofactor requirements for synthesis of cholesterol from lanosterol are NAD, NADPH, and oxygen. Metal ions, reducing agents, heme, or heme-containing proteins are not required. Another homogeneous, low-molecular-weight protein, which accompanies SCP during purification steps, does not support sterol metabolism by membrane-bound enzymes. The broad functions of SCP in cholesterol synthesis and metabolism coupled with its remarkable abundance (~8% of the liver-soluble proteins), ubiquitous occurrence, and recently discovered functions in fatty acid metabolism suggest SCP plays an important regulatory role in lipid metabolism.  相似文献   

18.
19.
Pregnenolone synthesis was estimated in whole adrenal homogenates incubated in the presence of cyanoketone (2alpha-cyano-4,4,17alpha-trimethyl-androst-5-en-17beta-ol-3-one). The yield of pregnenolone depended on the type of incubation medium employed. Both Ca++ and bovine serum albumin (BSA) markedly stimulated the rate of pregnenolone synthesis as did NADPH or NADPH generating system. Aminoglutethimide added in vitro inhibited cholesterol sidechain cleavage activity. Ether stress in vivo stimulated pregnenolone synthesis in vitro, and hypophysectomy of 24 hours duration resulted in a decrease. Cortisone administration for 8 days reduced the formation of pregnenolone by rat adrenal homogenates, an effect prevented by concomitant treatment with ACTH. Similarly, hypophysectomy of 8 days duration resulted in a marked diminution of pregnenolone synthesis and ACTH replacement reversed this effect. Changes in pregnenolone synthesis were paralleled by changes in corticosterone and total steroid production.  相似文献   

20.
In rats postpubertal orchiectomy results in an increase in the adrenal weight, testosterone replacement restores the adrenal weight to the normal level. Neither ovariectomy (8 weeks of duration) nor estradiol replacement has an effect on adrenal weight in female rats. Pregnenolone synthesis as well as corticosterone and blue tetrazolium-positive steroids secretion is significantly higher in homogenates of adrenals from female rats than from males. Orchiectomy results in a marked increase in pregnenolone biosynthesis, testosterone replacement restores the value to the normal levels. Neither ovariectomy nor estradiol replacement has an effect on pregnenolone synthesis in v i t r o. In both sexes gonadectomy causes a marked decrease in corticosterone output by adrenal homogenates, concomitantly the increase in the adrenal 5alpha-reductase activity is observed. The ratio of secreted corticosterone to pregnenolone is significantly lower in gonadectomized rats of both sexes than in control animals. Estradiol or testosterone replacement inhibits the adrenal 5alpha-reductase activity and restores the corticosterone output as well as corticosterone/pregnenolone ratio to the normal values. The above described findings show that the sex differences in steroids secretion by the rat adrenal are partially conditioned by a cholesterol sidechain cleavage activity. Testosterone inhibits this activity while estradiol under applied experimental conditions has no effect on the cholesterol sidechain cleavage activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号