首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants of Escherichia coli K-12 requiring high concentrations of branched-chain amino acids for growth were isolated. One of the mutants was shown to be defective in transport activity for branched-chain amino acids. The locus of the mutation (hrbA) was mapped at 8.9 min on the E. coli genetic map by conjugational and transductional crosses. The gene order of this region is proC-hrbA-tsx. The hrbA system was responsible for the uptake activity of cytoplasmic membrane vesicles. It was not repressed by leucine. The substrate specificities and kinetics of the uptake activities were studied using cytoplasmic membrane vesicles and intact cells of the mutants grown in the presence or absence of leucine. Results showed that there are three transport systems for branched-chain amino acids, LIV-1, -2, and -3. The LIV-2 and -3 transport systems are low-affinity systems, the activities of which are detectable in cytoplasmic membrane vesicles. The systems are inhibited by norleucine but not by threonine. The LIV-2 system is also repressed by leucine. The LIV-1 transport system is a high-affinity system that is sensitive to osmotic shock. When the leucine-isoleucine-valine-threonine-binding protein is derepressed, the high-affinity system can be inhibited by threonine.  相似文献   

2.
The cells of Pseudomonas aeruginosa showed high activity for leucine transport in the absence of Na+, giving a Km value of 0.34 microM. In the presence of Na+, however, two Km values, 0.37 microM (LIV-I system) and 7.6 microM (LIV-II system), were obtained. The former system seemed to serve not only for the entry of leucine, isoleucine, and valine, but also for that of alanine and threonine, although less effectively. However, the LIV-II system served for the entry of branched-chain amino acids only. The LIV-II system alone was operative in membrane vesicles, for the transport of branched-chain amino acids in membrane vesicles required Na+ and gave single Km values for the respective amino acids. When cells were osmotically shocked, the activity of the LIV-I system decreased, whereas the LIV-II system remained unaffected. The shock fluid from P. aeruginosa cells showed leucine-binding activity with a dissociation constant of 0.25 microM. The specificity of the activity was very similar to that of the LIV-I system. These results suggest that a leucine-binding protein(s) in the periplasmic space may be required for the transport process via the LIV-I system of P. aeruginosa.  相似文献   

3.
The Escherichia coli K-12 mutant strain AE4107 (livH::Mu) is defective in the high-affinity binding protein-mediated uptake system for L-leucine, L-valine, and L-isoleucine (LIV-I). We have used this strain to produce mutations in the residual LIV-II membrane-bound branched-chain amino acid uptake system. Mutants selected for their inability to utilize exogenous L-leucine were found to be defective in the LIV-II system and fell into two classes. One class, represented by strain AE410709 (livP9), showed a complete loss of saturable uptake for L-leucine, L-valine, and L-isoleucine up to 50 muM, and a second class, represented by strain AE4017012 (liv-12), showed a residual component of saturable leucine uptake with increased Km. These mutations, livP9 and liv-12, were closely linked and mapped in the 74 to 78 min region of the E. coli genetic map. Strains constructed so that they lacked both LIV-I and LIV-II transport systems excreted leucine. Strains of the genotype livH+ livP were found to have normal high-affinity binding protein-mediated transport (LIV-I and leucine specific), whereas the low-affinity (LIV-II) transport was completely missing. We concluded from these studies that the high-affinity binding protein-mediated transport systems (LIV-I and leucine specific) can operate independently of the membrane-bound LIV-II system.  相似文献   

4.
The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.  相似文献   

5.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

6.
7.
Since both transport activity and the leucine biosynthetic enzymes are repressed by growth on leucine, the regulation of leucine, isoleucine, and valine biosynthetic enzymes was examined in Escherichia coli K-12 strain EO312, a constitutively derepressed branched-chain amino acid transport mutant, to determine if the transport derepression affected the biosynthetic enzymes. Neither the iluB gene product, acetohydroxy acid synthetase (acetolactate synthetase, EC 4.1.3.18), NOR THE LEUB gene product, 3-isopropylmalate dehydrogenase (2-hydroxy-4-methyl-3-carboxyvalerate-nicotinamide adenine dinucleotide oxido-reductase, EC 1.1.1.85), were significantly affected in their level of derepression or repression compared to the parental strain. A number of strains with alterations in the regulation of the branched-chain amino acid biosynthetic enzymes were examined for the regulation of the shock-sensitive transport system for these amino acids (LIV-I). When transport activity was examined in strains with mutations leading to derepression of the iluB, iluADE, and leuABCD gene clusters, the regulation of the LIV-I transport system was found to be normal. The regulation of transport in an E. coli strain B/r with a deletion of the entire leucine biosynthetic operon was normal, indicating none of the gene products of this operon are required for regulation of transport. Salmonella typhimurium LT2 strain leu-500, a single-site mutation affecting both promotor-like and operator-like function of the leuABCD gene cluster, also had normal regulation of the LIV-I transport system. All of the strains contained leucine-specific transport activity, which was also repressed by growth in media containing leucine, isoleucine and valine. The concentrated shock fluids from these strains grown in minimal medium or with excess leucine, isoleucine, and valine were examined for proteins with leucine-binding activity, and the levels of these proteins were found to be regulated normally. It appears that the branched-chain amino acid transport systems and biosynthetic enzymes in E. coli strains K-12 and B/r and in S. typhimurium strain LT2 are not regulated together by a cis-dominate type of mechanism, although both systems may have components in common.  相似文献   

8.
The high affinity branched-chain amino acid transport system (LIV-I) in Pseudomonas aeruginosa is composed of five components: BraC, a periplasmic binding protein for branched-chain amino acids; BraD and BraE, integral membrane proteins; BraF and BraG, putative nucleotide-binding proteins. By using a T7 RNA polymerase/promoter system we overproduced the BraD, BraE, BraF, and BraG proteins in Escherichia coli. The proteins were found to form a complex in the E. coli membrane and solubilized from the membrane with octyl glucoside. The LIV-I transport system was reconstituted into proteoliposomes from solubilized proteins by a detergent dilution procedure. In this reconstituted system, leucine transport was completely dependent on the presence of all five Bra components and on ATP loaded internally to the proteoliposomes. Alanine and threonine in addition to branched-chain amino acids were transported by the proteoliposomes, reflecting the substrate specificity of the BraC protein. GTP replaced ATP well as an energy source, and CTP and UTP also replaced ATP partially. Consumption of loaded ATP and concomitant production of orthophosphate were observed only when BraC and leucine, a substrate for LIV-I, were added together to the proteoliposomes, indicating that the LIV-I transport system has an ATPase activity coupled to translocation of branched-chain amino acids across the membrane.  相似文献   

9.
A mutant of Pseudomonas aeruginosa PAO which has a defect in the structural gene for a binding protein for leucine, isoleucine, valine, alanine, and threonine (LIVAT-binding protein) was isolated and characterized. DL-4-azaleucine was taken up via the high-affinity branched-chain amino acid transport system (LIV-I), but not via the low affinity system (LIV-II), and then inhibited the growth of P. aeruginosa cells. This finding enabled us to select mutants defective in the LIV-I transport system alone. Among such mutants, strain PAO3530 was found to produce an altered LIVAT-binding protein. The shock fluid of this strain contained a normal level of the protein which corresponded to the wild-type LIVAT-binding protein as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by an immunological test. However, the shock fluid showed almost no binding activity for branched-chain amino acids, suggesting that strain PAO3530 has a defect in the structural gene for the LIVAT-binding protein. The mutation locus (bra-310) was mapped in a region between cnu-9001 and oru-325 on the chromosome of P. aeruginosa PAO by conjugation mediated by plasmid FP5 or R68.45.  相似文献   

10.
The braZ gene for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO was isolated and characterized. Determination of the nucleotide sequence showed that the braZ gene comprises 1,311 nucleotides specifying a protein of 437 amino acids. Hydropathy analysis suggested that the product is an integral membrane protein with 12 membrane-spanning segments. The amino acid sequence showed extensive homology to those of the braB and brnQ gene products, branched-chain amino acid carriers of P. aeruginosa and Salmonella typhimurium, respectively. By using the T7 RNA polymerase-promoter system, the braZ gene product was identified as a protein of an apparent Mr of 34,000 on a sodium dodecyl sulfate-polyacrylamide gel. Properties of the transport system encoded by braZ were studied by using P. aeruginosa PAO3537, defective in both the high- and low-affinity branched-chain amino acid transport systems (LIV-I and LIV-II, respectively). The transport system encoded by braZ was found to be another effective branched-chain amino acid transport system in P. aeruginosa PAO and was thus designated as LIV-III. This system is specific for isoleucine and valine, giving the same Km value of 12 microM for these amino acids. The system was found, however, to have a very low affinity for leucine, with a Km value of 150 microM, which contrasts with the substrate specificities of LIV-I and LIV-II.  相似文献   

11.
Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine.  相似文献   

12.
The effect of cholesterol on the activity of the branched-chain amino acid transport system of Streptococcus cremoris was studied in membrane vesicles of S. cremoris fused with liposomes made of egg yolk phosphatidylcholine, soybean phosphatidylethanolamine, and various amounts of cholesterol. Cholesterol reduced both counterflow and proton motive force-driven leucine transport. Kinetic analysis of proton motive force-driven leucine uptake revealed that the Vmax decreased with an increasing cholesterol/phospholipid ratio while the Kt remained unchanged. The leucine transport activity decreased with the membrane fluidity, as determined by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the fused membranes, suggesting that the membrane fluidity controls the activity of the branched-chain amino acid carrier.  相似文献   

13.
A series of mutants of Escherichia coli K-12 requiring a high concentration of L-proline for growth were isolated from a proline auxotroph strain, JE2133. Genetic studies of the mutants, PT19, PT21, and PT22, showed that all the mutations (proT) were point mutations, and these were mapped at 82 min on the E. coli genetic map. Intact cells and cytoplasmic membrane vesicles of these mutants were specifically defective in L-proline transport activity. Strain PT21 had no detectable activity of the L-proline transport carrier at all, and strains PT19 and PT22 had only 1/35 and 1/70, respectively, of the transport activity of the parental strain. The mutants were also shown to have a defect in proline-binding function of the carrier by measuring specific binding of proline to sonically disrupted membranes. These results indicate that the gene proT determines the function of proline carrier in the cytoplasmic membrane.  相似文献   

14.
Five mutants, CD15, CD31, CE4, CE5, and CE14, defective in the transport of branched-chain amino acids were isolated as glycyl-l-isoleucine and glycyl-l-valine requirers from an isoleucine-valine-requiring mutant, KA931, of Salmonella typhimurium LT2. Although these transport mutants do not grow in minimal medium supplemented with isoleucine (10 mug/ml) and valine (20 mug/ml), where the parent strain, KA931, grows normally, they do when the supplements are increased 10-fold in concentration, and the growth rate becomes comparable to that of the parent strain. When the apparent K(m) and V(max) for uptake of isoleucine, valine, and leucine in the transport mutants were compared to those of KA931, the K(m) was generally lower in the mutants, and the V(max) for isoleucine and leucine decreased to one-fourth to one-seventh and for valine one-eighth to one-fifteenth of that in the parent. In all mutants except CE5, the transport of methionine, arginine, threonine, and glycine was normal. The transport of threonine in CE5 appeared to be slightly impaired. In addition to the original mutation in the ilvC locus, the transport mutant has a mutation at the ilvT locus, which is closely linked to proC and may be located on the side of proC proximal to purE. About 26-fold difference in values of the co-transduction is noted in reciprocal transductions between KA502 and CD15 strains.  相似文献   

15.
The complex interrelationships between the transport of inorganic cations and C4 dicarboxylate were examined using mutants defective in potassium transport and retention, divalent cation transport, or phosphate transport. The potassium transport system, studied using 86Rb+ as a K+ analogue, kinetically appeared as a single system (Km 200 microM for Rb+, Ki 50 microM for K+), the activity of which was only slightly reduced in K+ retention mutants. Divalent cation transport, studied using 54Mn2+, 60Co2+, and 45Ca2+, was more complex being represented by at least two systems, one with a high affinity for Mn2+ (Km 2.5 microM) and a more general one of low affinity (Km 1.3-10 mM) for Mg2+, Mn2+, Ca/2+, and Co2+. Divalent cation transport was repressed by Mg2+, derepressed in K+ retention mutants, and defective in Co2+-resistant mutants. Phosphate was required for both divalent cation and succinate transport, and phosphate transport mutants (arsenate resistant) were found to be defective in both divalent cation and succinate transport. Divalent cations, especially Mg2+ and Co2+, decreased Km for succinate transport approximately 20-fold over that achieved with K+; neither cation was required stoichiometrically for succinate transport. The loss of divalent cation transport in cobalt-resistant mutants has been correlated with the loss of a 55,000 molecular weight membrane protein. Similarly, the loss of phosphate transport in arsenate-resistant mutants has been correlated with the loss of a 35,000 molecular weight membrane component.  相似文献   

16.
Multiplicity of leucine transport systems in Escherichia coli K-12   总被引:34,自引:26,他引:8       下载免费PDF全文
The major component of leucine uptake in Escherichia coli K-12 is a common system for l-leucine, l-isoleucine, and l-valine (LIV-I) with a Michaelis constant (K(m)) value of 0.2 muM (LIV-I system). The LIV-binding protein appears to be associated with this system. It now appears that the LIV-I transport system and LIV-binding protein also serve for the entry of l-alanine, l-threonine, and possibly l-serine. A minor component of l-leucine entry occurs by a leucine-specific system (L-system) for which a specific leucine-binding protein has been isolated. A mutant has been obtained that shows increased levels of the LIV-I transport activity and increased levels of both of the binding proteins. Another mutant has been isolated that shows only a major increase in the levels of the leucine-specific transport system and the leucine-specific binding protein. A third binding protein that binds all three branched-chain amino acids but binds isoleucine preferentially has been identified. The relationship of the binding proteins to each other and to transport activity is discussed. A second general transport system (LIV-II system) with a K(m) value of 2 muM and a relatively low V(max) can be observed in E. coli. The LIV-II system is not sensitive to osmotic shock treatment nor to growth of cells in the presence of leucine. This high K(m) system, which is specific for the branched-chain amino acids, can be observed in membrane vesicle preparations.  相似文献   

17.
The systems which transport methionine in Salmonella typhimurium LT2 have been studied. Fourteen mutants, isolated by three different selection procedures, had similar growth characteristics and defects in the specific transport process showing a Km of 0.3 microM for L-methionine, and therefore lack the high-affinity, metP transport system. The sites of mutation in four of the mutants were shown by P1-mediated transduction to be linked (0.3 to 1.1%) with a proline marker located at unit 7 on the S. typhimurium chromosome. The high-affinity system was subject to both repression and transinhibition by methionine, and it may also be regulated by the metJ and metK genes. There appeared to be at least two additional transport systems with relatively low affinities for methionine in the metP763 mutant strain, with apparent Km values for methionine of 24 microM and approximately 1.8 mM. The latter system, with a very low affinity for methionine, was inhibited by leucine. In addition, methionine inhibited leucine transport, suggesting that one of the low-affinity methionine transport systems may actually be a leucine transport system.  相似文献   

18.
Regulation of branched-chain amino acid transport in Escherichia coli.   总被引:16,自引:14,他引:2       下载免费PDF全文
The repression and derepression of leucine, isoleucine, and valine transport in Escherichia coli K-12 was examined by using strains auxotrophic for leucine, isoleucine, valine, and methionine. In experiments designed to limit each of these amino acids separately, we demonstrate that leucine limitation alone derepressed the leucine-binding protein, the high-affinity branched-chain amino acid transport system (LIV-I), and the membrane-bound, low-affinity system (LIV-II). This regulation did not seem to involve inactivation of transport components, but represented an increase in the differential rate of synthesis of transport components relative to total cellular proteins. The apparent regulation of transport by isoleucine, valine, and methionine reported elsewhere was shown to require an intact leucine, biosynthetic operon and to result from changes in the level of leucine biosynthetic enzymes. A functional leucyl-transfer ribonucleic acid synthetase was also required for repression of transport. Transport regulation was shown to be essentially independent of ilvA or its gene product, threonine deaminase. The central role of leucine or its derivatives in cellular metabolism in general is discussed.  相似文献   

19.
Pseudomonas aeruginosa PAO mutants defective in the transport systems for branched-chain amino acids were isolated and characterized. Two mutations in strains selected for trifluoroleucine resistance, braA300 and braB307, were mapped in the met-9020-dcu-9108 and the nar-9011-puuC10 region, respectively. The mutation loci in strains selected for azaleucine resistance, braC310 and bra-311 through bra-314, were all located near the fla genes, with an order of region I fla-bra-region II fla. Strains with braA300 showed a marked reduction in the high-affinity branched-chain amino acid transport system (LIV-I) and a considerable decrease in the lower-affinity system (LIV-II). Strains with braB307 were found to be defective in the LIV-II system. Strains selected for azaleucine resistance were all defective only in the LIV-I system and fell into three phenotypically distinct classes. Strains with braC310 produced a binding protein for leucine, isoleucine, valine, alanine, and threonine (LIVAT-BP) altered in binding ability, indicating that the braC gene is the structural one for the LIVAT-BP. Strains with bra-311 or bra-312 showed a complete loss of production of the LIVAT-BP. Strains with bra-313 or bra-314 produced normal levels of functional LIVAT-BP, suggesting that these mutations are located in a gene(s) other than braC.  相似文献   

20.
Addition of 0.1% casein hydrolysate to a minimal growth medium decreased membrane-bound transhydrogenase activity in Escherichia coli by about 80%. Of the amino acids added individually to the growth medium, only leucine and, to a lesser extent, methionine and alanine were effective, alpha-Ketoisocaproate- and leucine-containing peptides repressed the activity, and leucine also repressed activity in adenyl cyclase-deficient and relaxed strains. Derepression of transhydrogenase followed the removal of leucine from the growth medium and was sensitive to rifampin and chloramphenicol. A phosphoglucoisomerase-deficient strain that was forced to use the hexose monophosphate shunt exclusively had normal levels of transhydrogenase, which was repressed by leucine. Transhydrogenase activity doubled in mutants lacking either of the shunt dehydrogenases but was still repressed by leucine. In strains constitutive for the leucine biosynthetic operon, transhydrogenase was repressed by leucine but in strains livR and lst R, with leucine transport resistant to leucine repression, transhydrogenase was not repressed by leucine. These data suggest that transhydrogenase may have a function in the transport of branched-chain amino acids. In a hisT strain (which has altered leucyl-tRNA), transhydrogeanse was at a repressed level without the addition of leucine, suggesting that leucyl-tRNA may be involved in the regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号