首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:3,自引:0,他引:3  
The interactive effects of multiple global change drivers on terrestrial carbon (C) storage remain poorly understood. Here, we synthesise data from 633 published studies to show how the interactive effects of multiple drivers are generally additive (i.e. not differing from the sum of their individual effects) rather than synergistic or antagonistic. We further show that (1) elevated CO2, warming, N addition, P addition and increased rainfall, all exerted positive individual effects on plant C pools at both single‐plant and plant‐community levels; (2) plant C pool responses to individual or combined effects of multiple drivers are seldom scale‐dependent (i.e. not differing from single‐plant to plant‐community levels) and (3) soil and microbial biomass C pools are significantly less sensitive than plant C pools to individual or combined effects. We provide a quantitative basis for integrating additive effects of multiple global change drivers into future assessments of the C storage ability of terrestrial ecosystems.  相似文献   

2.
孟凡超  郭军  周莉  熊明明  张雷 《生态学杂志》2017,28(12):4117-4126
气温、大气CO2浓度和降水等气候因子是影响作物生长发育的关键因子,而不同的气候因子对作物的影响并非独立的,多气候因子交互作用对作物的影响目前已成为研究的焦点问题.研究不同气候因子交互作用的影响,其结果更接近作物生长的实际情况,有助于了解作物甚至作物生态系统对气候变化的真实响应.国内外关于不同气候因子对作物影响的报道较多,要全面总结不同气候因子交互作用对作物的影响是非常困难的.因此,本文只对近年来有关气温升高、大气CO2浓度增加和降水变化交互作用对作物生长发育、光合生理及产量影响的研究进展做一简要评述,并提出目前研究的不足和需要解决的关键问题,以期为气候变化对作物生长发育及产量影响的研究提供参考.  相似文献   

3.
    
As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta‐analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta‐analysis of 150 multiple‐factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single‐factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate–biosphere feedbacks and improve predictions of the future states of the ecological and climate systems.  相似文献   

4.
5.
6.
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming prevented this effect while warming without CO2 enrichment did not significantly affect N availability. These findings indicate that warming could play an important role in the impact of [CO2] on ecosystem N cycling, potentially overturning CO2‐induced effects in some ecosystems.  相似文献   

7.
    
Shifts in plant phenology influence ecosystem structures and functions, yet how multiple global change drivers interact to affect phenology remains elusive. We conducted a meta-analysis of 242 published articles to assess interactions between warming (W) and other global change drivers including nitrogen addition (N), increased precipitation (IP), decreased precipitation (DP) and elevated CO2 (eCO2) on multiple phenophases in experimental studies. We show that leaf out and first flowering were most strongly affected by warming, while warming and decreased precipitation were the most pronounced drivers for leaf colouring. Moreover, interactions between warming and other global change drivers were common and both synergistic and antagonistic interactions were observed: interactions W + IP and W + eCO2 were frequently synergistic, whereas interactions W + N and W + DP were mostly antagonistic. These findings demonstrate that global change drivers often affect plant phenology interactively. Incorporating the multitude of interactions into models is crucial for accurately predicting plant responses to global changes.  相似文献   

8.
    
Aims Leaf traits of trees exposed to elevated [CO2] in association with other environmental factors are poorly understood in tropical and subtropical regions. Our goal was to investigate the impacts of elevated [CO2] and N fertilization on leaf traits in southern China.Methods Four tree species, Schima superba Gardn. et Champ. (S. superba), Ormosia pinnata (Lour.) Merr (O. pinnata), Castanopsis hystrix AC. DC. (C. hystrix) and Acmena acuminatissima (Blume) Merr. et Perry (A. acuminatissima) were studied in a factorial combination of atmospheric [CO2] (ambient at ~390 μmol mol ? 1 and elevated [CO2] at ~700 μmol mol-1) and N fertilization (ambient and ambient + 100 kg N ha-1 yr-1) in open-top chambers in southern China for 5 years. Leaf mass per unit leaf area (LMA), leaf nutrient concentration and photosynthesis (A sat) were measured.Important findings Results indicated that leaf traits and photosynthesis were affected differently by elevated [CO2] and N fertilization among species. Elevated [CO2] decreased LMA in all species, while N fertilization did not affect LMA. Leaf mass-based N concentration (N M) was significantly greater in O. pinnata and C. hystrix grown in elevated [CO2] but was lower in S. superba. Leaf mass-based P concentration (P M) was significantly greater in C. hystrix and A. acuminatissima exposed to elevated [CO2] but was lower in S. superba. N fertilization significantly increased P M in O. pinnata but decreased P M in S. superba. Photosynthetic stimulation in O. pinnata, C. hystrix and A. acuminatissima was sustained after 5 years of CO2 fumigation. N fertilization did not modify the effects of elevated [CO2] on photosynthesis. Leaf traits (N M, N A, P M, P A) and light-saturated photosynthesis were decreased from the upper to lower canopy. Canopy position did not alter the responses of leaf traits and photosynthesis to elevated [CO2]. Results suggest that photosynthetic stimulation by elevated [CO2] in native species in subtropical regions may be sustained in the long term.  相似文献   

9.
采用盆栽控制试验对黄土丘陵区白羊草在不同CO2浓度(400和800 μmol·mol-1)和施氮水平(0、2.5、5.0 g N·m-2·a-1)条件下根际和非根际土壤水溶性有机碳(DOC)和水溶性有机氮(DON)的变化特征进行研究.结果表明: CO2浓度升高对白羊草根际和非根际土壤DOC、水溶性总氮(DTN)、DON、水溶性铵态氮(NH4+-N)、水溶性硝态氮(NO3--N)含量均无显著影响.施氮显著提高了根际和非根际土壤DTN、NO3--N含量和根际土壤DON含量,显著降低了根际土壤DOC/DON.在各处理条件下,根际土壤DTN、NO3--N和DON含量均显著低于非根际土壤,根际土壤DOC/DON显著高于非根际土壤.短期CO2浓度升高对黄土丘陵区土壤水溶性有机碳、氮含量无显著影响,而氮沉降的增加在一定程度上改善了土壤中水溶性氮素缺乏的状况,但并不足以满足植被对水溶性氮素的需求.  相似文献   

10.
黄土高原植被景观多尺度变化及其与地形的响应关系   总被引:2,自引:0,他引:2  
基于RS和GIS技术,利用黄土高原近30年不同分辨率的归一化植被指数(NDVI),采用基于小波分析的多尺度空间统计学方法,研究不同时期黄土高原植被景观的多尺度变化特征及其与地形的响应关系。结果表明:(1)黄土高原植被景观1982—2011年期间发生了周期性变化。其中,1990年以前为植被恢复阶段,1990—2001年为植被退化阶段,2001年以后为植被恢复阶段。(2)植被景观的空间异质性与数据获取的时间、数据分辨率、空间位置和地形均有关。一方面,植被指数和数据分辨率越高,植被景观的空间异质性就越大,而且沿经度方向植被景观的空间差异性大于纬度方向;另一方面,NDVI的多尺度变化特征与地形因子有不同程度的相关性,表现为:高程地形湿度坡度坡向,这对于今后黄土高原植被景观的合理布局,提高生物多样性,控制水土流失,增强景观的连续性具有特别重要的意义,也可为指导生态环境建设提供基础资料。  相似文献   

11.
    
There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13C or 14C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (−8.92%). Contrary to the residual C partitioning observed under eCO2, the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.  相似文献   

12.
大气一氧化碳浓度升高对植物生长的影响   总被引:18,自引:2,他引:18       下载免费PDF全文
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

13.
  总被引:1,自引:0,他引:1  
Over the last few decades, there has been an increasing number of controlled‐manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers [i.e., nitrogen (N) deposition, warming, and elevated CO2] on primary productivity and on the biogeochemistry of carbon (C), N, and phosphorus (P) across different terrestrial ecosystems. Here, we capitalize on this large amount of information by performing a comprehensive meta‐analysis (>2000 case studies worldwide) to address how C:N:P stoichiometry of plants, soils, and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (i) individual effects of N addition and elevated CO2 on C:N:P stoichiometry are stronger than warming, (ii) combined effects of pairs of global change drivers (e.g., N addition + elevated CO2, warming + elevated CO2) on C:N:P stoichiometry were generally weaker than the individual effects of each of these drivers, (iii) additive interactions (i.e., when combined effects are equal to or not significantly different from the sum of individual effects) were more common than synergistic or antagonistic interactions, (iv) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (v) C:N:P responses to global change are strongly affected by ecosystem type, local climate, and experimental conditions. Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long‐term ecosystem‐scale studies testing multifactor effects on plants and soils are urgently required across different world regions.  相似文献   

14.
全球气候变暖与氮(N)沉降是两个同时存在的全球变化主要因素,但目前关于二者的研究多以单因子为主。细根形态和化学性状等功能性状在促进植物养分获取和森林生物地球化学循环方面起着关键作用,但目前气候变暖、N沉降以及两者交互对细根形态和化学性状的影响尚不清楚。在福建三明森林生态系统国家野外科学观测研究站陈大观测点开展土壤增温与N添加双因子试验,包括对照(无增温,无氮添加)、低氮(+4gN m-2 a-1)、高氮(+8gN m-2 a-1)、增温(+5℃)、增温+低氮(+5℃,+4gN m-2 a-1)、增温+高氮(+5℃,+8gN m-2 a-1)六个处理,探讨增温与N添加对杉木(Cunninghamia Lanceolata)细根形态和化学性状的影响。结果表明:(1)增温显著增加了细根直径(D)。增温和N添加的交互作用对细根比根长(SRL)、比表面积(SRA)及组织密度(RTD)均存在显著影响,与对照相比,增温处理及增...  相似文献   

15.
    
Ecosystem models predict that short-term responses to elevated atmospheric CO2 may differ substantially from the \"real\" long-term responses expected at equilibrium. Experimental validation of these model predictions is difficult as the data available are from short-term studies that do not include biogeochemical feedbacks typical of long-term exposure. Using a reciprocal transplant design at a natural CO2 spring, we generated combinations of atmospheric and soil conditions that represented both short- and long-term elevated CO2 conditions. Plant responses were significantly different between these treatments, confirming model predictions that there is not a simple relationship between transient and equilibrium responses to elevated CO2.  相似文献   

16.
    
Global change may have profound effects on soil nitrogen (N) cycling that can induce positive feedback to climate change through increased nitrous oxide (N2O) emissions mediated by nitrification and denitrification. We conducted a meta-analysis of the effects of elevated CO2 on nitrification and denitrification based on 879 observations from 58 publications and 46 independent elevated CO2 experiments in terrestrial ecosystems. We investigated the effects of elevated CO2 alone or combined with elevated temperature, increased precipitation, drought, and N addition. We assessed the response to elevated CO2 of gross and potential nitrification, potential denitrification, and abundances of related functional genes (archaeal amoA, bacterial amoA, nirK, nirS, and nosZ). Elevated CO2 increased potential nitrification (+28%) and the abundance of bacterial amoA functional gene (+62%) in cropland ecosystems. Elevated CO2 increased potential denitrification when combined with N addition and higher precipitation (+116%). Elevated CO2 also increased the abundance of nirK (+25%) and nirS (+27%) functional genes in terrestrial ecosystems and of nosZ (+32%) functional gene in cropland ecosystems. The increase in the abundance of nosZ under elevated CO2 was larger at elevated temperature and high N (+62%). Four out of 14 two-way interactions tested between elevated CO2 and elevated temperature, elevated CO2 and increased precipitation, and elevated CO2 and N addition were marginally significant and mostly synergistic. The effects of elevated CO2 on potential nitrification and abundances of bacterial amoA and nirS functional genes increased with mean annual temperature and mean annual precipitation. Our meta-analysis thus suggests that warming and increased precipitation in large areas of the world could reinforce positive responses of nitrification and denitrification to elevated CO2 and urges the need for more investigations in the tropical zone and on interactive effects among multiple global change factors, as we may largely underestimate the effects of global change on soil N2O emissions.  相似文献   

17.
    
Abstract Long‐term exposure of plants to elevated CO2 often leads to downward photosynthetic acclimation. Nitrogen (N) deficiency could potentially exacerbate this response by reducing growth rate and the sink for photosynthates, but this has not always been observed. Experimentally, the interpretation of N effects on CO2 responses can be confounded by increasing severity of tissue N deficiency over time when N supply is not adjusted as demand increases. In this study, N supply ranged from sub‐ to supra‐optimal (20–540 kgN ha–l equivalent), and relatively stable levels of tissue N concentration were obtained in all treatments by varying twice‐weekly application rates in proportion to plant growth. The effects of N on photosynthesis and growth of beans (Phaseolus vulgaris L.) raised at ambient (35 Pa) and three elevated (70, 105, 140 Pa) CO2 partial pressures (pCO2) were evaluated. Averaging across N treatments, leaf total non‐structural carbohydrates (TNC) were 2.5‐ to 3‐fold higher and leaf N concentrations were 31–35% lower at elevated compared to ambient pCO2. Light‐saturated net CO2 assimilation rates measured at growth pCO2 (Asatg) were significantly higher (26–40% depending on N supply) in plants grown at elevated compared to ambient pCO2. When measured at a common pCO2 of 35 Pa, the Asat of plants grown at elevated CO2 was 15–29% less than that of plants grown at 35 Pa, indicative of downward photosynthetic acclimation. The magnitude of downward photosynthetic acclimation to elevated CO2 was greater in plants grown at high (180 and 540 kgN ha–l) compared to low (20 and 60 kgN ha–l) N supply, and this was associated with a higher Asat at growth pCO2, higher leaf area ratio (leaf area/total biomass), and higher TNC in leaves of high‐N plants. Our results indicate that the effect of N on acclimation to CO2 will depend on the balance between supply and demand for N during the growing period, and the effect this has on biomass allocation and source‐sink C balance at the whole‐plant level.  相似文献   

18.
Two experiments are described in which plants of six species were grown for one full season in greenhouse compartments with 350 or 560 μ mol mol–1 CO2. In the first experiment two levels of nitrogen supply were applied to study the interaction between CO2 and nitrogen. In the second experiment two levels of water supply were added to the experimental set-up to investigate the three-way interaction between CO2, nitrogen and water. Biomass and biomass distribution were determined at harvests, while water use and soil moisture were monitored throughout the experiments. In both experiments a positive effect of CO2 on growth was found at high nitrogen concentrations but not at low nitrogen concentrations. However, plants used much less water in the presence of low nitrogen concentrations. Drought stress increased the relative effect of elevated CO2 on growth. Available soil moisture was used more slowly at high CO2 during drought or at high nitrogen concentrations, while at low nitrogen concentrations decreased water use resulted in an increase in soil moisture. The response to the treatments was similar in all the species used. Although potentially faster growing species appeared to respond better to high CO2 when supplied with a high level of nitrogen, inherently slow-growing species were more successful at low nitrogen concentrations.  相似文献   

19.
    
Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi‐mechanistic temperature–response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2, warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R= 0.77). We applied the model to estimate annual (March–October) Reco, which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six‐year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2, but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a ‘wet’ year). Treatment‐level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.  相似文献   

20.
全球变化与生态系统研究是一个宏观与微观相互交叉、多学科相互渗透的前沿科学领域, 重点研究生态系统结构和功能对全球变化的响应及反馈作用, 其目标是实现人类对生态系统服务的可持续利用。《植物生态学报》的《全球变化与生态系统》专辑在对国内外全球变化研究进行历史回顾和综合分析的基础上, 总结了全球变化与生态系统研究的阶段性重大进展及存在的主要问题, 并对全球变化研究的前沿方向进行展望和建议。根据研究内容和对象, 该专辑系统地综述了不同全球变化因子, 包括CO2和O3浓度升高、气候变暖、降水格局改变、氮沉降增加、土地利用变化等对陆地植物生理生态、群落结构及生态系统功能等的影响以及全球变化对海洋生态系统的影响; 探讨生态系统关键过程以及生物多样性的变化; 在明确全球变化生态效应的基础上, 阐明这些影响对气候和环境变化的反馈机制, 为构筑全球变化的适应对策提供生态学理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号