首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This is the first time that composition, antimicrobial potential and antioxidant ability of essential oil from the leaves of Baccharis oreophila are reported. Essential oil was obtained by hydrodistillation and analyzed by GC/MS. Antimicrobial potential was evaluated by diffusion disk and broth microdilution methods. ABTS.+, DPPH. and FRAP methods were employed for antioxidant activity evaluation. Essential oil yield was 0.47 %. Sixty‐five compounds were identified, representing 88.53 % of the total essential oil, which showed to be rich in oxygenated (37.88 %) and hydrocarbons sesquiterpenes (34.84 %). The main constituents were khusimone (16.37 %) and spathulenol (16.12 %). Antimicrobial activity was verified against S. aureus (10.33±0.5 mm, MIC: 1250 μg mL?1) and C. albicans (8.66±0.5 mm, MIC: >2500 μg mL.1). Antioxidant ability was evidenced by FRAP (4.09 μmol FeSO4 E mL?1), ABTS.+ (1.45 μmol TE mL?1) and DPPH. (1.04 μmol TE mL?1) scavenging capacity. Results showed that this essential oil has interesting biological potential, encouraging further investigations especially in relation to action mechanisms of antimicrobial and antioxidant activity.  相似文献   

2.
In this study, we investigated the phenolic composition of the crude extract (MeOH 80 %) of Alnus cordata (Loisel .) Duby stem bark (ACE) and its antioxidant and skin whitening properties. RP‐LC‐DAD analysis showed a high content of hydroxycinnamic acids (47.64 %), flavanones (26.74 %) and diarylheptanoids (17.69 %). Furthermore, ACE exhibited a dose‐dependent antioxidant and free‐radical scavenging activity, expressed as half‐maximal inhibitory concentration (IC50): Oxygen radical absorbance capacity (ORAC, IC50 1.78 μg mL?1)>Trolox equivalent antioxidant capacity (TEAC, IC50 3.47 μg mL?1)>2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH, IC50 5.83 μg mL?1)>β‐carotene bleaching (IC50 11.58 μg mL?1)>Ferric reducing antioxidant power (FRAP, IC50 17.28 μg mL?1). Moreover, ACE was able to inhibit in vitro tyrosinase activity (IC50 77.44 μg mL?1), l ‐DOPA auto‐oxidation (IC50 39.58 μg mL?1) and in an in vivo model it exhibited bleaching effects on the pigmentation of zebrafish embryos (72 h post fertilization) without affecting their development and survival. In conclusion, results show that A. cordata stem bark may be considered a potential source of agents for the treatment of skin disorders due to its bleaching properties and favorable safety profiles, associated to a good antioxidant power.  相似文献   

3.
The chemical composition of the essential oil (LEO) and its volatile fractions (V1–V10) collected during the hydrodistillation process every 15 min from the fresh leaves of I. viscosa (L.), growing in Tunisia, were analyzed by GC‐FID and GC/MS. Eighty‐two compounds, representing 90.9–99.4 % of the total samples, were identified. The crude essential oil (LEO) and its fractions (V1–V10) were characterized by the presence of a high amount of oxygenated sesquiterpenes (82.7–95.8 %). Isocostic acid ( 1 ) was found to be the most abundant component (37.4–83.9 %) and was isolated from the same essential oil over silica gel column chromatography and identified by spectroscopic methods (1H, 13C, DEPT 135 NMR and EI‐MS) and by comparison with literature data. Furthermore, the fresh leaves essential oil (LEO), its volatile fractions (V1–V10) as well as compound 1 were screened for their antibacterial, antityrosinase, anticholinesterase and anti‐5‐lipoxygenase activities. It was found that the isolated compound 1 exhibited an interesting antibacterial activity against Staphylococcus aureus ATCC 25923 (MIC=32 μg/mL) and Enterococcus faecalis ATCC 29212 (MIC=32 μg/mL) and the highest antityrosinase activity (IC50=13.82±0.87 μg/mL). Compound 1 was also found to be able to strongly inhibit 5‐lipoxygenase with an IC50 value of 59.21±0.85 μg/mL. The bioactivity and drug likeness scores of compound 1 were calculated using Molinspiration software and interpreted, and the structure‐activity relationship (SAR) was discussed with the help of molecular docking analysis.  相似文献   

4.
The ethanolic leaf extract (TZP) of Zuccagnia punctata, its ethereal fraction (Eet), 2′,4′‐dihydroxychalcone (DC), 2′,4′‐dihydroxy‐3′‐methoxychalcone (DMC) and 7‐hydroxy‐3′,4′‐dimethoxyflavone (HF) were evaluated as fungicide seed protectants on corn. Microdilution assays on a set of Fusarium strains showed minimum inhibitory concentrations (MICs) of 400–800 μg mL?1 (TZP), 50–100 μg mL?1 (Eet), 25–50 μg mL?1 (DC), 50–100 μg mL?1 (DMC) and 200–400 μg mL?1 (HF), with minimum fungicidal concentration (MFC)/MIC = 1. Suspensions of TZP, Eet, DC and DMC at MIC × 20 incorporated to the grains at rates of 1920, 240, 120 and 240 mg dry matter kg?1 of grain, respectively, increased the elongation of the primary roots (24–44%) and the number of seminal roots (44–50%). TZP also increased the number of secondary roots. HF was phytotoxic. Suspensions of TZP, Eet, DC and DMC suppressed the endogenous grain mycoflora at levels similar to those recorded for a thiram + carbendazim‐based fungicide. Grains treated with TZP (1920 mg kg?1), Eet (240 mg kg?1), DC (120 mg kg?1) and DMC (240 mg kg?1) stimulated the growth of the seedling root system both because of fungal suppression and hormetic effects in greenhouse curative and preventive assays against Fusarium verticillioides on a sand/soil substrate. Eet and its chalcones also reduced the severity of seedling blight more than the thiram + carbendazim‐based fungicide in preventive assays and led to the same disease severity observed for the fungicide treatment in the curative assays. Our results show that Eet and its chalcones not only were effective seed protectants against F. verticillioides and other seedborne fungi, but also improved the early performance of maize seedlings.  相似文献   

5.
The mechanochemical synthesis and characterization of a zinc complex with famotidine is described. The complex was characterized by microanalysis and a number of spectroscopic techniques. The complex was of M:L dihydrate type. Derivatization of famotidine with zinc appears to enhance the activity of the drug by inhibiting the growth of Helicobacter pylori (two reference and 34 clinical isolates). The complex inhibited the growth of H. pylori in an MIC range of 1–8 μg mL?1. The anti-H. pylori activity of the zinc–famotidine complex against antibiotic-resistant strains was nearly comparable to that of antibiotic-susceptible strains. The complex was found to be far less toxic than the parent drug, as demonstrated by its higher LD50 value. In the human urease enzyme inhibition assay the complex exhibited significant inhibition. The new complex appears to be more useful in eradicating both the antibiotic-susceptible and antibiotic-resistant strains of H. pylori.  相似文献   

6.
Two julichrome monomers, julichromes Q11 ( 1 ) and Q12 ( 2 ), along with five known julichromes (Q10, Q3 ? 5, Q3 ? 3, Q6 ? 6, Q6, 3 – 7 ) and four known anthraquinones (chrysophanol, 4‐acetylchrysophanol, islandicin, huanglongmycin A, 8 – 11 ), were isolated from the marine gastropod mollusk Batillaria zonalis‐associated Streptomyces sampsonii SCSIO 054. This is the first report of julichromes isolated from a marine source. Extensive dissection of 1D and 2D NMR datasets combined with X‐ray crystallography enabled rigorous elucidation of the previously reported configurations of julichrome Q3 ? 5 ( 4 ) and related julichrome Q3 ? 3 ( 5 ); both of the configuration at C(9) needs to be revised. In addition, julichrome Q12 ( 2 ) was found to display antibacterial activity against Micrococcus luteus and Bacillus subtilis with MICs of 2.0 and 8.0 μg mL?1; four compounds ( 1 , 3 , 6 , 7 ) also showed inhibitory activities against an array of methicillin‐resistant Staphylococcus aureus, S. aureus and S. simulans AKA1 with MIC values ranging from 8 to 64 μg mL?1.  相似文献   

7.
We present the inhibitory properties of the R. pompana anthocyanin fraction (RPAF) and its major constituents on alpha-glucosidase (AG), pancreatic lipase (PL), HMG-CoA reductase, and ornithine decarboxylase (ODC). The effect of RPAF was also evaluated in ICR male mice subjected to oral glucose tolerance test (OGTT) and hypercaloric/atherogenic diet for 30 days. RP-HPLC/MS profiling revealed that RPAF contained five major anthocyanins and induced slight inhibition on PL and HMG-CoA reductase (IC50, 245–338 μg mL−1) whereas strong activity on AG and ODC (IC50, 130–133 μg mL−1) was observed. Kinetic studies and molecular docking with pelargonidin-3-O-rutinoside (P3R) on ODC, revealed changes in Km (0.9514–0.9746 mM) and Vmax (1.96–2.32 μmol mg−1 min−1) suggesting mixed inhibition and molecular interaction with two active sites of ODC. P3R showed antiproliferative activity (IC50, 46.5 μM) and decreased polyamine accumulation in DLD-1 cells. The results of OGTT confirmed that RPAF regulates postprandial glucose levels in diabetic animals which experienced a significant glucose depletion (30 %; p<0.001) from 30 to 120 min post-treatment. Prolonged supplementation of RPAF caused significant decrease (p<0.001) in plasma glucose, total cholesterol, LDL-c and triglycerides as well as significant increase (p<0.001) of HDL-c compared with normoglycemic untreated animals.  相似文献   

8.
The essential oils of five Lavandula stoechas cultivars grown in Thailand were characterized for their volatile compounds using GC‐FID and GC/MS methods as well as screened for antibacterial and antioxidant activities. Dried aerial parts, including flowers and stems from each cultivar, were subjected to hydrodistillation for 4 h. The essential oil yields were 0.18 %–0.82 % w/w. Of the 95 compounds detected and identified, 1,8‐cineole, fenchone, and camphor were considered the major compounds. Essential oil from each cultivar demonstrated different patterns of antibacterial activity and a variety of antioxidant properties. The highest antibacterial activity, MIC=0.39 mg mL?1, was observed from the essential oil of L. stoechas ‘major’ (against Klebsiella pneumoniae and Salmonella typhimurium) and the essential oil of L. stoechas ‘white lavender’ (against S. typhimurium). The essential oil of L. stoechas×viridis ‘St. Brelade’ possessed the highest antioxidant capacity, as determined by the DPPH and ABTS assays (IC50 of 67.65 and 89.26 mg mL?1, respectively). The results indicated that some of these essential oils could be used as key ingredients in lavender oil products in Thailand to increase their therapeutic efficacy, depending on their intended application.  相似文献   

9.
Aims: Thirty Campylobacter jejuni strains isolated from fecal samples (n = 94; 32%) from 13 positive farms (n = 17; 76%) from commercial broiler chickens in Puerto Rico were analysed by molecular methods. Methods and Results: Isolates were identified with multiplex polymerase chain reaction assays, tested for their antimicrobial susceptibility and characterized with pulsed‐field gel electrophoresis (PFGE), multilocus sequence typing (MLST), serotyping and bacterial cytotoxicity in mammalian cells. Isolates exhibited high resistance to vancomycin (minimum inhibitory concentration, MIC of >256 μg ml?1) and trimethoprim (MIC of >32 μg ml?1); few were resistant to clindamycin (MIC90 4 μg ml?1), erythromycin (MIC90 8 μg ml?1) and tetracycline (MIC90 8 μg ml?1); but none was resistant to azithromycin (MIC90 4 μg ml?1), ciprofloxacin (MIC90 1 μg ml?1) or gentamycin (MIC90 4 μg ml?1). Most strains restricted with SmaI, but a combination of SmaI–KpnI digestion was more discriminatory. MLST analysis yielded four sequence types (ST), and ST‐2624 was the predominant one. Phylogenetic analysis revealed a high degree of recombination for glnA and pgm genes. The predominant serotypes were O:3 and O:5. Most strains had lowest cytotoxicity potential with Caco‐2 cells, medium cytotoxicity with INT‐407 and Hep‐2 cells and high cytotoxicity with CHO cells. Conclusion: A low degree of antimicrobial resistance, 13 PFGE profiles, 4 ST and a large variability in cytotoxicity assays were found for these strains. Significance and Impact of the Study: This is the first characterization of C. jejuni strains isolated from broilers in Puerto Rico. The genetic diversity of these strains suggests that several techniques are needed for strain characterization.  相似文献   

10.
The essential oil from the annual plant Lepidium virginicum L. was chemically characterized in three consecutive years (2018–2020). The essential oils were evaluated in vitro and in situ on the causal agent of anthracnose in tamarillo fruits (Solanum betaceum). The main volatile constituents were phenylacetonitrile (>60 %), linalool (>10 %), limonene (>7 %) and α-terpineol (>5 %). The essential oil (MIC, 19–30 μg mL−1), phenylacetonitrile (MIC, 45 μg mL−1) and α-terpineol (MIC, 73 μg mL−1) caused a significant inhibition in the conidial viability from a wild strain of Colletotrichum acutatum, which was isolated and identified as a causal agent of anthracnose. The inoculation of conidia from C. acutatum in non-symptomatic tamarillo fruits, followed by the in situ treatment with different concentrations of the essential oil (>30 μg mL−1), phenylacetonitrile and α-terpineol, significantly (p<0.01) avoided the degradation of anthocyanins (delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside and pelargonidin 3-O-rutinoside) and carotenoids (β-cryptoxanthin and β-carotene) as well as retarded yellowing and necrosis triggered by anthracnose at least for 10 days. Our results suggest the potential use of the essential oil from L. virginicum as a natural component to preserve the nutraceutical content of tamarillo fruits against C. acutatum infection.  相似文献   

11.
A series of laboratory bioassays with each consisting of low, medium and high concentration treatments of the fungal biocontrol agent Beauveria bassiana alone or supplemented with an increasing sublethal rate of imidacloprid were conducted to quantify the fungal and chemical interactions on chrysanthemum aphid Macrosiphoniella sanborni (0.01‐0.05 a.i. μg mL?1) and green peach aphid Myzus persicae (0.05‐0.5 a.i. μg mL?1). During one week after exposure to a 1 mL spray onto a 95 cm2 area in a Potter Spray Tower, M. sanborni was either more susceptible to B. bassiana or more sensitive to imidacloprid than M. persicae. The time–concentration–mortality (TCM) responses of each aphid species in each of five bioassays fit well to a TCM model, indicating a strong dependence of the fungal and chemical interactions on both concentration and post‐spray time. Adding imidacloprid to B. bassiana sprays at the rates of 0.025–0.05 μg mL?1 against M. sanborni or 0.1–0.5 μg mL?1 against M. persicae significantly enhanced or accelerated the fungal action. Based on the LC50 or LC90 estimates and their variances determined by the fitted TCM relationships for each aphid species, the relative potencies of an imidacloprid‐inclusive bioassay over those with B. bassiana alone or together with a lower sublethal rate ranged from a few to hundreds of times and varied over days after spray. These results suggest an alternative tactic for practical control of the aphid pests by a combined formulation or application of B. bassiana and imidacloprid and manage aphid resistance to the chemical insecticide.  相似文献   

12.
Fifteen diterpenoids ( 1 – 15 ), including three undescribed ones with ent‐atisane skeleton, eupnerias G–I ( 1 – 3 ), were obtained from Euphorbia neriifolia. Compounds 1 – 3 were established through comprehensive spectroscopic analysis. Compounds 4 and 5 exhibited obvious anti‐HIV‐1 effect, and their EC50 were 6.6±3.2 and 6.4±2.5 μg mL?1, respectively. Compound 6 exhibited moderate cytotoxicity on HepG2 and HepG2/Adr cells with IC50 at 13.70 and 15.57 μm , respectively. In addition, compound 15 exhibited significant cytotoxicity on HepG2 cell lines (IC50=0.01 μm ), while it did not show any cytotoxicity against HepG2/Adr cell lines.  相似文献   

13.
Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 μg mL−1. Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 μg mL−1) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 μg mL−1. The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.  相似文献   

14.
Aims: We undertook a series of experiments to investigate the susceptibility of Legionella pneumophila grown under extracellular and intracellular conditions and other water‐related bacteria to silver ions. Methods and Results: In this study, the antimicrobial effect of silver ions to intra‐ and extra‐cellular grown Legionella bacteria was investigated. The minimal inhibitory concentration (MIC) after 24 h exposure, leading to a 5 log reduction, was c. 64 μg l?1 AgNO3 for extracellular grown Legionella and other tested Gram‐positive and Gram‐negative bacteria. In contrast, the MIC for intracellularly grown Legionella was up to 4096 μg l?1 AgNO3 after 24 h. Furthermore, the heterotrophic bacteria grown within a biofilm model were killed at a concentration of 4–16 μg l?1 AgNO3. In contrast, biofilm‐associated Legionella were less sensitive (MIC 128–512 μg l?1 AgNO3). Conclusion: Intracellularly and biofilm‐grown legionellae are less sensitive against silver compared with agar‐grown bacteria. Significance and Impact of the Study: The reduced sensitivity of Legionella grown in amoebae might explain why the effect of silver decontamination requires an extended exposure in field trials.  相似文献   

15.
A series of new acetohydrazone‐containing 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives were designed and synthesized for the purpose of searching for novel agrochemicals with higher fungicidal activity. Their in vitro fungicidal activities against Rhizoctonia solani were evaluated, and the most promising compound, 2‐[(5,7‐dimethyl[1,2,4]triazolo[1,5‐a]pyrimidin‐2‐yl)sulfanyl]‐2′‐[(2‐hydroxyphenyl)methylidene]acetohydrazide ( 2‐17 ), showed a lower EC50 value (5.34 μg ml?1) than that of commercial carbendazim (EC50=7.62 μg ml?1). Additionally, compound 2‐17 was also found to display broad‐spectrum fungicidal activities, and its EC50 value (4.56 μg ml?1) against Botrytis cinereapers was very similar to that of carbendazim. Qualitative structure–activity relationships (QSARs) of the synthesized compounds were also discussed.  相似文献   

16.
The Cunila angustifolia essential oil was obtained from fresh leaves by hydrodistillation and analyzed by GC‐FID and GC‐MS to determine its chemical composition. The essential oil presented pulegone (29.5 %) and isomenthol (27.0 %) as major components, and other compounds such as menthone (8.6 %), neomenthol (7.2 %), menthyl acetate (2.5 %) and caryophyllene oxide (2.0 %) were identified. The cytotoxic activity of the essential oil was evaluated by MTS assay, with the human cancer cell lines of the lung (A549), breast (MCF‐7) and skin melanoma (SK‐Mel‐28). The assay showed the highest selectivity, to MCF‐7 cell lines, with IC50 equal to 34.0 μg mL?1, low selectivity for SK‐Mel‐28 cell lines, with IC50 equal to 279.9 μg mL?1, and no mortality to A549 cell lines.  相似文献   

17.
IsCT1‐NH2 is a cationic antimicrobial peptide isolated from the venom of the scorpion Opisthacanthus madagascariensis that has a tendency to form an α‐helical structure and shows potent antimicrobial activity and also inopportunely shows hemolytic effects. In this study, five IsCT1 (ILGKIWEGIKSLF)‐based analogs with amino acid modifications at positions 1, 3, 5, or 8 and one analog with three simultaneous substitutions at the 1, 5, and 8 positions were designed. The net charge of each analog was between +2 and +3. The peptides obtained were characterized by mass spectrometry and analyzed by circular dichroism for their structure in different media. Studies of antimicrobial activity, hemolytic activity, and stability against proteases were also carried out. Peptides with a substitution at position 3 or 5 ([L]3‐IsCT1‐NH2, [K]3‐IsCT1‐NH2, or [F]5‐IsCT1‐NH2) showed no significant change in an activity relative to IsCT1‐NH2. The addition of a proline residue at position 8 ([P]8‐IsCT1‐NH2) reduced the hemolytic activity as well as the antimicrobial activity (MIC ranging 3.13‐50 μmol L?1), and the addition of a tryptophan residue at position 1 ([W]1‐IsCT1‐NH2) increased the hemolytic activity (MHC = 1.56 μmol L?1) without an improvement in antimicrobial activity. The analog [A]1[F]5[K]8‐IsCT1‐NH2, which carries three simultaneous modifications, presented increasing or equivalent values in antimicrobial activity (MIC approximately 0.38 and 12.5 μmol L?1) with a reduction in hemolytic activity. In addition, this analog presented the best resistance against proteases. This kind of strategy can find functional hotspots in peptide molecules in an attempt to generate novel potent peptide antibiotics.  相似文献   

18.
We aimed to characterize and investigate the antibacterial potential of the native stingless bees geopropolis volatile oils (VO) for the search of potentially new bioactive compounds. Geopropolis samples from Melipona bicolor schencki, M. compressipes manaosensis, M. fasciculata, M. quadrifasciata, M. marginata and M. seminigra merrillae were collected from hives in South Brazil. VO were obtained by hydrodistillation and characterised by gas chromatography coupled to mass spectrometry (GC/MS). Antimicrobial activity was assessed by microplate dilution method. The lowest MIC against cell walled bacteria was 219±0 μg mL−1 from M. quadrifasciata geopropolis VO with Staphylococcus aureus. The M. b. schencki geopropolis VO minimal inhibition concentration (MIC) was 424±0 μg mL−1 against all the mycoplasma strains evaluated. Fractionation resulted in the reduction of 50 % of the MIC value from the original oil. However, its compounds’ synergism seems to be essential to this activity. Antibiofilm assays demonstrated 15.25 % eradication activity and 13.20 % inhibition of biofilm formation after 24 h for one subfraction at 2× its MIC as the best results found. This may be one of the essential mechanisms by which geopropolis VOs perform their antimicrobial activity.  相似文献   

19.
The extracts of five invasive plants were investigated for antifungal and antibiofilm activities against Candida albicans, C. glabrata, C. krusei, and C. parapsilosis. The antifungal activity was evaluated using the microdilution assay and the antibiofilm effect by measurement of the metabolic activity. Ethanol and ethanol-water extracts of Reynoutria japonica leaves inhibited 50 % of planktonic cells at 250 μg mL−1 and 15.6 μg mL−1, respectively. Ethanol and ethanol-water extracts of Baccharis halimifolia inhibited >75 % of the mature biofilm of C. albicans at 500 μg mL−1. The essential oil (EO) of B. halimifolia leaves was the most active (50 % inhibition (IC50) at 4 and 74 μg mL−1against the maturation phase and 24 h old-biofilms of C. albicans, respectively). Oxygenated sesquiterpenes were the primary contents in this EO (62.02 %), with β-caryophyllene oxide as the major component (37 %). Aromadendrene oxide-(2), β-caryophyllene oxide, and (±)-β-pinene displayed significant activities against the maturation phase (IC50=9–310 μ mol l−1) and preformed 24 h-biofilm (IC50=38–630 μ mol l−1) of C. albicans with very low cytotoxicity for the first two compounds. C. albicans remained the most susceptible species to this EO and its components. This study highlighted for the first time the antibiofilm potential of B. halimifolia, its EO and some of its components.  相似文献   

20.
Hu Y  Li G  Zhang Z 《Luminescence》2011,26(5):313-318
In this paper, the novel trivalent copper–periodate complex {K5[Cu(HIO6)2], DPC} has been applied in a luminol‐based chemiluminescence (CL) reaction. Coupled with flow injection (FI) technology, the FI‐CL method was proposed for the determination of lincomycin hydrochloride. The CL reaction between luminol and DPC occurred in an alkaline medium. The CL intensity could be greatly enhanced by lincomycin hydrochloride. The relative CL intensity was proportional to the concentration of lincomycin hydrochloride in the range of 1 × 10?8 to 5 × 10?6 g mL?1 and the detection limit was at the 3.5 × 10?9 g mL?1 level. The relative standard deviation at 5 × 10?8 g mL?1 was 1.7% (n = 9). The sensitive method was successfully applied to the direct determination of lincomycin hydrochloride (ng mL?1) in serum. A possible mechanism of the lumonol–DPC CL reaction was discussed by the study of the CL kinetic characteristics and the spectra of CL reaction. The oxidability of DPC was studied by means of its electrochemical response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号