首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An easy hydrothermal synthesis strategy was applied to synthesize green‐yellow emitting nitrogen‐doped carbon dots (N‐CDs) using 1,2‐diaminobenzene as the carbon source, and dicyandiamide as the dopant. The nitrogen‐doped CDs resulted in improvement in the electronic characteristics and surface chemical activities. N‐CDs exhibited bright fluorescence emission and could response to Ag+ selectively and sensitively. Other ions produced nearly no interference. A N‐CDs based fluorescent probe was then applied to sensitively determine Ag+ with a detection limit of 5 × 10?8 mol/L. The method was applied to the determination of Ag+ dissolved in water. Finally, negligibly cytotoxic, excellently biocompatibile, and highly fluorescent carbon dots were applied for HepG2 cell imaging and the quenched fluorescence by adding Ag+, which indicated its potential applications.  相似文献   

2.
The heterocyclic compound diethyl 6‐anilino‐5H‐2,3‐dithia‐5,7‐diazacyclopenta(cd)indene‐1,4‐dicarboxylate (D1) was found to form highly emissive aggregates in polar solvents, and the aggregate emission can be tuned by the simple addition of water to a dimethylsulfoxide solution. A theoretical study based on Density functional theory (DFT) calculations, shows that intermolecular interactions of D1 with solvent may be potential factors in the fluorescence change. In addition, the phenyl ring in D1 plays an important role because of its response to solvent. In the non‐aggregated state, deprotonation of the N–H of D1 can proceed easily on the addition of base, and the deprotonated compound might interact with Ag+, resulting in a significant change in color and fluorescence quenching, which make it a potential chemosensor for the selective detection of trace amounts of Ag+. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Glucose‐6‐phosphate dehydrogenase (G6PD) is the first enzyme on which the pentose phosphate pathway was checked. In this study, purification of a G6PD enzyme was carried out by using rat erythrocytes with a specific activity of 13.7 EU/mg and a yield of 67.7 and 155.6‐fold by using 2′,5′‐ADP Sepharose‐4B affinity column chromatography. For the purpose of identifying the purity of enzyme and molecular mass of the subunit, a sodium dodecyl sulfate‐polyacrylamide gel electrophoresis was carried out. The molecular mass of subunit was calculated 56.5 kDa approximately. Then, an investigation was carried out regarding the inhibitory effects caused by various metal ions (Fe2+, Pb2+, Cd2+, Ag+, and Zn2+) on G6PD enzyme activities, as per Beutler method at 340 nm under in vitro conditions. Lineweaver–Burk diagrams were used for estimation of the IC50 and Ki values for the metals. Ki values for Pb+2, Cd+2, Ag+, and Zn+2 were 113.3, 215.2, 19.4, and 474.7 μM, respectively.  相似文献   

4.
The reduction of nuclear fast red (NFR) stain by sodium tetrahydroboron was catalyzed in the presence of silver ions (Ag+). The fluorescence properties of reduced NFR differed from that of NFR. The product showed fluorescence emission at 480 nm with excitation at 369 nm. Furthermore, the fluorescence intensity of the mixture increased strongly in the presence of Ag+ and Britton–Robinson buffer at pH 4.78. There was a good linear relationship between increased fluorescence intensity (ΔI) and Ag+ concentration in the range 5.0 × 10?9 to 5.0 × 10?8 M. The correlation coefficient was 0.998, and the detection limit (3σ/k) was 1.5 × 10?9 M. The colour of the reaction system changed with variation in Ag+ concentration over a wide range. Based on the colour change, a visual semiquantitative detection method for recognition and sensing of Ag+ was developed for the range 1.0 × 10?8 to 5.0 × 10?4 M, with an indicator that was visible to the naked eye. Therefore, a sensitive, simple method for determination of Ag+ was developed. Optimum conditions for Ag+ detection, the effect of other ions and the analytical application of Ag+ detection of synthesized sample were investigated.  相似文献   

5.
In this study, d ‐penicillamine‐functionalized graphene quantum dots (DPA‐GQD) has been synthesized, which significantly increases the fluorescence intensity of GQD. We used this simple fluorescent probe for metal ions detection in human plasma samples. Designed DPA‐GQD respond to Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+ with high sensitivity. The fluorescence intensity of this probe decreased significantly in the presence of metal ions such as, Hg2+, Cu2+, Au2+, Ag+, Co2+, Zn2+, and Pb2+. In this work, a promising probe for ions monitoring was introduced. Moreover, DPA‐GQD probe has been tested in plasma samples. The functionalized DPA‐GQDs exhibits great promise as an alternative to previous fluorescent probes for bio‐labeling, sensing, and other biomedical applications in aqueous solution.  相似文献   

6.
A rhodamine‐based fluorescent chemodosimeter rhodamine hydrazide‐triazole (RHT) tethered with a triazole moiety was developed for Cu2+ detection. In aqueous medium, the RHT probe exhibited high selectivity and sensitivity toward Cu2+ among other metal ions. The addition of Cu2+ triggered a fluorescence emission of RHT by 384‐fold (Φ = 0.33) based on a ring‐opening process and a subsequent hydrolysis reaction. Moreover, RHT also showed a selective colorimetric response toward Cu2+ from colorless solution to pink, readily observed with the naked eye. The limit of detection of RHT for Cu2+ was calculated to be 1 nM (0.06 ppb). RHT was successfully demonstrated to detect Cu2+ in Chang liver cells by confocal fluorescence microscopy.  相似文献   

7.
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag+). The results revealed a good linear trend over Ag+ concentrations in the range 0.01–8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Based on chelation‐enhanced fluorescence, a new fluorescent coumarin derivative probe 3(1‐(7‐hydroxy‐4‐methylcoumarin)ethylidene)hydrazinecarbodithioate for Hg2+, Ag+ and Ag nanoparticles is reported. Fluorescent probe acts as a rapid and highly selective “off–on” fluorescent probe and fluorescence enhancement by factors 5 to12 times was observed upon selective complexation with Hg2+, Ag+ and Ag nanoparticles. The molar ratio plots indicated the formation of 1:1 complexes between Hg2+ and Ag+ with the probe. The linear response range covers a concentration range 0.1 × 10–5–1.9 × 10–5 mol/L, 0.1 × 10–5–2.3 × 10–5 mol/L and 0.146 × 10–12–2.63 × 10–12 mol/L for Hg2+, Ag+ and Ag nanoparticles, respectively. The interference effect of some anions and cations was also tested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A new compound, ethyl 5‐phenyl‐2‐(p‐tolyl)‐2H‐1,2,3‐triazole‐4‐carboxylate was successfully introduced and synthesized as a novel rhodamine B derivative named REPPC, and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and high resolution mass spectrometry (HRMS). It showed an obvious fluorescence and UV–visible light absorption enhancement towards Hg2+ ion without interference from common metal ions in N,N‐dimethylformamide–H2O (pH 7.4). The spirolactam ring moiety of rhodamine in REPPC was converted to the open‐ring form generating a 1:1 complex with the intervention of a mercury ion, verified by electrospray ionization‐mass spectroscopy testing and density functional theory calculation. REPPC was used to visualize the level of mercury ions in living HeLa cells with encouraging results.  相似文献   

10.
Herein, we report the selective binding of Ag+ ion by the anthracene‐based chalcone receptor 1. Receptor 1 behaves as a selective and sensitive chemosensor for the recognition of Ag+ over other heavy and transition metal ions without any interference and is capable of detecting the metal ion down to 0.15 × 10?6 M. Receptor 1 on binding with Ag+ ions exhibits a ratiometric fluorescence enhancement, which is due to the inhibition of photoinduced electron transfer along with the intramolecular charge transfer mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
BaO‐B2O3‐P2O5 glasses doped with a fixed concentration of Tb3+ ions and varying concentrations of Al2O3 were synthesized, and the influence of the Al3+ ion concentration on the luminescence efficiency of the green emission of Tb3+ ions was investigated. The optical absorption, excitation, luminescence spectra and fluorescence decay curves of these glasses were recorded at ambient temperature. The emission spectra of terbium ions when excited at 393 nm exhibited two main groups of bands, corresponding to 5D3 → 7Fj (blue region) and 5D4 → 7Fj (green region). From these spectra, the radiative parameters, viz., spontaneous emission probability A, total emission probability AT, radiative lifetime τ and fluorescent branching ratio β, of different transitions originating from the 5D4 level of Tb3+ ions were evaluated based on the Judd‐Ofelt theory. A clear increase in the quantum efficiency and luminescence of the green emission of Tb3+ ions corresponding to 5D4 → 7F5 transition is observed with increases in the concentration of Al2O3 up to 3.0 mol%. The improvement in emission is attributed to the de‐clustering of terbium ions by Al3+ ions and also to the possible admixing of wave functions of opposite parities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, a simple and selective fluorescence sensor approach called ‘turn‐on–off’ for the determination of thiamine (TM) has been developed. As known, the o‐phenanthroline (o‐phen) has inner fluorescence, though when reacted with zinc ions to form the o‐phen–Zn2+ complex the fluorescence intensity was enhanced effectively, while upon addition of TM into the o‐phen–Zn2+ complex solution, the intensity of the system was gently quenched, which was termed the ‘turn‐on–off’ probe. Notably, the method possessed highly selective, sensitive determination for TM with a detection limit of 0.25 μmol L?1 and the reduced fluorescence intensity was proportional to the concentration of TM in the range 0.84–80.0 μmol L?1. Besides, the proposed mechanism was also investigated through exploring the Fourier transform infrared (FT‐IR), nuclear magnetic resonance (NMR) spectroscopy. Furthermore, this manner was successfully applied into practical samples for TM detection with satisfactory results.  相似文献   

13.
A phenothiazine–rhodamine (PTRH) fluorescent dyad was synthesized and its ability to selectively sense Zn2+ ions in solution and in in vitro cell lines was tested using various techniques. When compared with other competing metal ions, the PTRH probe showed the high selectivity for Zn2+ ions that was supported by electronic and emission spectral analyses. The emission band at 528 nm for the PTRH probe indicated the ring closed form of PTRH, as for Zn2+ ion binding to PTRH, the λem get shift to 608 nm was accompanied by a pale yellow to pink colour (under visible light) and green to pinkish red fluorescence emission (under UV light) due to ring opening of the spirolactam moiety in the PTRH ligand. Spectral overlap of the donor emission band and the absorption band of the ring opened form of the acceptor moiety contributed towards the fluorescence resonance energy transfer ON mechanism for Zn2+ ion detection. The PTRH sensor had the lowest detection limit for Zn2+, found to be 2.89 × 10?8 M. The sensor also demonstrated good sensing application with minimum toxicity for in vitro analyses using HeLa cells.  相似文献   

14.
A water‐soluble, high‐output fluorescent sensor, based on a lumazine ligand with a thiophene substituent for Cd2+, Hg2+ and Ag+ metal ions, is reported. The sensor displays fluorescence enhancement upon Cd2+ binding (log  β = 2.79 ± 0.08) and fluorescence quenching by chelating with Ag+ and Hg2+ (log β = 4.31 ± 0.15 and 5.42 ± 0.1, respectively). The mechanism of quenching is static and occurs by formation of a ground‐state non‐fluorescent complex followed by rapid intersystem crossing. The value of the Stern–Volmer quenching rate constant (kq) by Ag+ ions is close to 6.71 × 1012 mol/L/s at 298 K. The thermodynamic parameters (ΔG, ΔH and ΔS) were also evaluated and indicated that the complexation process is spontaneous, exothermic and entropically favourable. The quantitative linear relationship between the softness values of Klopman (σK) or Ahrland (σA) and the experimental binding constants (β) being in the order of Hg2+ > Ag+ > Cd2+ suggests that soft–soft interactions are the key for the observed sensitivity and selectivity in the presence of other metal ions, such as: Pb2+, Ni2+, Mn2+, Cu2+, Co2+, Zn2+ and Mg2+ ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A novel fluorescent sensor, 1‐((2‐hydroxynaphthalen‐1‐yl)methylene)urea (ocn) has been designed and applied as a highly selective and sensitive fluorescent probe for recognition of Al3+ in Tris–HCl (pH = 7.20) solution. The probe ocn exhibits an excellent selectivity to Al3+ over other examined metal ions, anions and amino acids with a prominent fluorescence ‘turn‐on’ at 438 nm. ocn binds to Al3+ with a 2:1 binding stoichiometry and the detection limit was 0.3 μM. Furthermore, its capability of biological application was evaluated and the results showed that the sensor could be used to detect Al3+ in living cells.  相似文献   

16.
We report a combined approach that introduces the use of 4‐aminobenzo‐15‐crown‐5 (4AB15C5) for the detection of ferric(III) ions by colorimetric, ultraviolet (UV)–visible light absorption, fluorescence, and live‐cell imaging techniques along with density functional theory (DFT) calculations. We have found that 4AB15C5 is sensitive and selective for binding ferric(III) ions in aqueous solutions. DFT calculations using the polarizable continuum model have been used to explain the strong binding of the ferric ion by 4AB15C5 in aqueous solutions. The detection limit in the fluorescence quenching measurements was found to be as low as 50 μM for the ferric ion with a determined Stern–Volmer constant of 1.52 × 104 M?1. Fluorescence intensity did not change for other ions tested, Fe2+, Co2+, Mn2+, Mg2+, Zn2+, Ca2+, NH4+, Na+, and K+ ions. Live‐cell fluorescence imaging was also used to check the intracellular variations in ferric ion levels. Our spectroscopic data indicated that 4AB15C5 can bind ferric ions selectively in aqueous solutions.  相似文献   

17.
A new colorimetric and fluorescent probe MNTPZ based on 1H‐imidazo[4,5‐b]phenazine derivative has been designed and synthesized for successive detection of Ag+ and I?. The probe MNTPZ shows selective colorimetric response by a change in color from yellow to orange and “turn‐off” fluorometric response upon binding with Ag+ in DMSO: Water (pH = 7, 1:1, v/v) over other cations. The binding mode of probe MNTPZ to Ag+ was studied by Job's plot, 1H NMR studies, FT‐IR spectroscopy and DFT calculations. Moreover, the situ generated probe MNTPZ + Ag+ complex acted as an efficient fluorometric “turn‐on” probe for I? via Ag+ displacement approach. The detection limit of probe MNTPZ for Ag+ and the resultant complex probe MNTPZ + Ag+ for I? were determined to be 1.36 μmol/L and 1.03 μmol/L respectively. Notably, the developed probe was successfully used for quantitative determination of I? in real samples with satisfactory results.  相似文献   

18.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Mercury (Hg) is one of the heavy metal pollutants in the environment. Even a very small amount of mercury can cause serious harm to human beings. Herein, we reported a new carbonothioate‐based fluorescent probe for the detection of Hg2+ without interference from other metal ions. This probe possessed a very large Stokes shift (192 nm), which could improve the detection sensitivity by minimizing the interferences resulted from self‐absorption or auto‐fluorescence. With the addition of Hg2+ to the probe solution, considerable fluorescence enhancement was observed. Additionally, the Hg2+ concentration of 0–16 μM and fluorescence intensity showed a good linear relationship (y = 22106× + 53108, R2 = 0.9955). Finally, the proposed probe was used to detect Hg2+ in real water samples, and its result was satisfactory. Therefore, our proposed probe would provide a promising method for the determination of Hg2+ in the environment.  相似文献   

20.
A trivalent rare‐earth ion (Sm3+)‐doped LiNa3P2O7 (LNPO) phosphor was synthesized using a conventional high‐temperature solid‐state reaction route. A predominant orthorhombic phase of LNPO was observed in all X‐ray diffraction patterns. The surface states of the LNPO:Sm phosphor were confirmed by X‐ray photoelectron spectroscopy. Under 401 nm excitation, the Sm‐doped LNPO phosphors showed sharp emission peaks at 563, 600 and 647 nm that are related to the f–f transition of Sm3+ ions. The optimum concentration of Sm3+ (9 mol%) produced Commission Internationale de l'Eclairage chromaticity coordinates, color rendering index and correlated color temperature of (0.564, 0.434), 42 and 1843 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号