首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect Lollium from fungal phytopatogens. The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics.  相似文献   

2.
A rapid and efficient metabolomic study of Cophinforma mamane and Fusarium solani co-cultivation in time-series based analysis was developed to study metabolome variations during their fungal interactions. The fungal metabolomes were studied through the integration of four metabolomic tools: MS-DIAL, a chromatographic deconvolution of liquid-chromatography-mass spectrometry (LC/MS); MS-FINDER, a structure-elucidation program with a wide range metabolome database; GNPS, an effective method to organize MS/MS fragmentation spectra, and MetaboAnalyst, a comprehensive web application for metabolomic data analysis and interpretation. Co-cultures of C. mamane and F. solani induced different patterns of metabolite production over 10 days of incubation and induced production of five de novo compounds not occurring in monocultures. These results emphasize that co-culture in time-frame analysis is an interesting method to unravel hidden metabolome in the investigation of fungal chemodiversity.  相似文献   

3.
《Fungal biology》2022,126(5):385-394
Endophytic fungi are capable of producing a great diversity of bioactive metabolites. However, the presence of silent and lowly expressed genes represents a main challenge for the discovery of novel secondary metabolites with different potential uses. Epigenetic modifiers have shown to perturb the production of fungal metabolites through the induction of silent biosynthetic pathways leading to an enhanced chemical diversity. Moreover, the addition of bioprecursors to the culture medium has been described as a useful strategy to induce specific biosynthetic pathways. The aim of this study was to assess the effects of different chemical modulators on the metabolic profiles of an endophytic fungal strain of Cophinforma mamane (Botryosphaeriaceae), known to produce 3 thiodiketopiperazine (TDKP) alkaloids (botryosulfuranols A-C), previously isolated and characterized by our team. Four epigenetic modifiers, 5-azacytidine (AZA), sodium butyrate (SB), nicotinamide (NIC), homoserine lactone (HSL) as well as 2 amino acids, l-phenylalanine and l-tryptophan, as bioprecursors of TDKPs, were used. The metabolic profiles were analysed by UHPLC-HRMS/MS under an untargeted metabolomics approach. Our results show that the addition of the two amino acids in C. mamane culture and the treatment with AZA significantly reduced the production of the TDKPs botryosulfuranols A, B and C. Interestingly, the treatment with HSL significantly induced the production of different classes of diketopiperazines (DKPs). The treatment with AZA resulted as the most effective epigenetic modifier for the alteration of the secondary metabolite profile of C. mamane by promoting the expression of cryptic genes.  相似文献   

4.
Histone deacetylase inhibitors (HDACis) have received considerable attention for their anti‐tumoral properties. We report here the effects of two HDACis, SAHA and MS‐275, on the biology of mesenchymal stem cells (MSCs). It is well known that HDACis trigger both DNA damage responses and actual DNA damage in cancer cells. On this premise, we evaluated HDACis influence on DNA damage pathways in MSCs. We analyzed a panel of genes involved in the regulation of base and nucleotide excision repair, mismatch repair, and double strand break repair. That a majority of the analyzed genes displayed significant expression changes upon incubation with SAHA or MS‐275 suggested that regulation of their expression is greatly affected by HDACis. The complex expression pattern, with some genes up‐regulated and other under‐expressed, did not allow to foresee whether these changes allow cells cope with stressful DNA damaging stimuli. Furthermore, we evaluated the biological outcome following treatment of MSCs with DNA damaging agents (H2O2 and UV) in presence of HDACis. In these settings, MSCs treated with H2O2 or UV radiation underwent apoptosis and/or senescence, and pre‐incubation with HDACi exacerbated cell death phenomena. Accordingly, the number of cells harboring 8‐oxo‐7,8‐dihydroguanine (8oxodG), a hallmark of DNA oxidative damage, was significantly higher in samples incubated with HDACis compared to controls. In summary, our findings suggest that SAHA and MS‐275, even at low effective doses, can alter the biology of MSCs, diminishing their ability to survive the effects of DNA‐damaging agents. J. Cell. Physiol. 225: 537–544, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
A comparative metabolomic study of a marine derived fungus (Aspergillus terreus) grown under various culture conditions is presented. The fungus was grown in eleven different culture conditions using solid agar, broth cultures, or grain based media (OSMAC). Multivariate analysis of LC/MS data from the organic extracts revealed drastic differences in the metabolic profiles and guided our subsequent isolation efforts. The compound 7‐desmethylcitreoviridin was isolated and identified, and is fully described for the first time. In addition, 16 known fungal metabolites were also isolated and identified. All compounds were elucidated by detailed spectroscopic analysis and tested for antibacterial activities against five human pathogens and tested for cytotoxicity. This study demonstrates that LC/MS based multivariate analysis provides a simple yet powerful tool to analyze the metabolome of a single fungal strain grown under various conditions. This approach allows environmentally‐induced changes in metabolite expression to be rapidly visualized, and uses these differences to guide the discovery of new bioactive molecules.  相似文献   

6.
Endophytic fungi have been reported to have the acquired ability to synthesize host plant specific medicinal natural products. Many fungi with such properties have been characterized and optimized for the conditions which favor maximal production of desired products. However, the inherent plant colonization property of promising endophytic fungi is least studied. Exploiting the transgenome functioning of these fungi have immense applications to add beneficial features to nonhost plants. In the present study, the endophytic fungus Phomopsis sp. isolated from Piper nigrum was confirmed for piperine production by HPLC and LCMS/MS. Further, the fungal isolate was studied for its colonization ability in Oryza sativa. Interestingly, the fungi treated plants were found to have significant plant growth enhancement when compared to the control. Further screening of extract from treated plants by HPLC and LCMS/MS resulted in the confirmation of presence of piperine. The observed result is extremely significant as it opens up novel applications of endophytic fungal colonization in taxonomically diverse plants.  相似文献   

7.
Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.  相似文献   

8.
9.

Aim

To examine the inhibition effects of rhizosphere fungal strain MF‐91 on the rice blast pathogen Magnaporthe grisea and sheath blight pathogen Rhizoctonia solani.

Methods and Results

Rhizosphere fungal strain MF‐91 and its metabolites suppressed the in vitro mycelial growth of R. solani. The inhibitory effect of the metabolites was affected by incubation temperature, lighting time, initial pH and incubation time of rhizosphere fungal strain MF‐91. The in vitro mycelial growth of M. grisea was insignificantly inhibited by rhizosphere fungal strain MF‐91 and its metabolites. The metabolites of rhizosphere fungal strain MF‐91 significantly inhibited the conidial germination and appressorium formation of M. grisea. Moreover, the metabolites reduced the disease index of rice sheath blight by 35·02% in a greenhouse and 57·81% in a field as well as reduced the disease index of rice blast by 66·07% in a field. Rhizosphere fungal strain MF‐91 was identified as Chaetomium aureum based on the morphological observation, the analysis of 18S ribosomal DNA internal transcribed spacer sequence and its physiological characteristics, such as the optimal medium, temperature and initial pH for mycelial growth and sporulation production.

Conclusions

Rhizosphere fungus C. aureum is effective in the biocontrolling of rice blast pathogen M. grisea and sheath blight pathogen R. solani both in in vitro and in vivo conditions.

Significance and Impact of the Study

This study is the first to show that rhizosphere fungus C. aureum is a potential fungicide against rice blast and sheath blight pathogens.  相似文献   

10.
11.
Endophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A−C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A−C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.  相似文献   

12.
Fungi and bacteria are key players in the decomposition of leaf litter, but their individual contributions to the process and their interactions are still poorly known. We combined semi‐quantitative proteome analyses (1‐D PAGE‐LC‐MS/MS) with qualitative and quantitative analyses of extracellular degradative enzyme activities to unravel the respective roles of a fungus and a bacterium during litter decomposition. Two model organisms, a mesophilic Gram‐negative bacterium (Pectobacterium carotovorum) and an ascomycete (Aspergillus nidulans), were grown in both, pure culture and co‐culture on minimal medium containing either glucose or beech leaf litter as sole carbon source. P. carotovorum grew best in co‐culture with the fungus, whereas growth of A. nidulans was significantly reduced when the bacterium was present. This observation suggests that P. carotovorum has only limited capabilities to degrade leaf litter and profits from the degradation products of A. nidulans at the expense of fungal growth. In accordance with this interpretation, our proteome analysis revealed that most of the extracellular biodegradative enzymes (i.e. proteases, pectinases, and cellulases) in the cultures with beech litter were expressed by the fungus, the bacterium producing only low levels of pectinases.  相似文献   

13.
14.
Enzyme promiscuity, a common property of many uridine diphosphate sugar‐dependent glycosyltransferases (UGTs) that convert small molecules, significantly hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC‐MS‐guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTs (NbUGT73A24 and NbUGT73A25), orthologues of pathogen‐induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalexin N‐feruloyl tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in Nbenthamiana. Enzymatic glucosylation of fractions of a physiological aglycone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in Nbenthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen‐induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional role of UGTs in plant resistance.  相似文献   

15.
Abstract The chemo‐ecological predispositions were investigated for the development of a complex disease on the basis of an insect–fungus mutualism using the system of horse chestnuts (Aesculus hippocastanum and Aesculus x carnea), the horse chestnut leaf miner (Cameraria ohridella) and the biotrophic powdery mildew (Erysiphe flexuosa). Both C. ohridella and E. flexuosa can appear on the same horse chestnut leaf tissue simultaneously. The olfactory detection of fungal infection by the insect, its ability to discriminate the potentially mutualistic fungus from other fungi and the impact of fungal infection on insect oviposition were examined. Gas chromatography coupled with mass spectroscopic and electroantennographic detection by C. ohridella (GC‐MS/EAD) was used to assess the olfactory detection of fungal‐infected A. hippocastanum and A. x carnea leaves by C. ohridella. Infection‐related compounds, such as benzyl alcohol, dodecane, tridecane and methyl salicylate as well as fungus‐related C8 compounds, are perceived by C. ohridella. The discrimination of E. flexuosa from another phytopathogenic fungus, such as Guignardia aesculi, is based primarily on the differing pattern of C8 compounds of these fungi. Oviposition on fungal‐infected leaves of A. hippocastanum and leaves treated with fungal‐related compounds showed that C. ohridella is able to respond to the modifications in the leaf volatile profiles of horse chestnuts caused by the different fungal infections. Thus, from the perception point of view, the necessary predispositions for the development of a close insect–fungus relation between the biotrophic fungus E. flexuosa and the leaf‐mining insect C. ohridella are fulfilled. However, decreased oviposition on infected leaves does not enhance the selective contact between the species. As a consequence, an important predisposition for forming an insect–fungus mutualism is not fulfilled by these two species and, according to this approach, the risk of forming a complex disease can be assessed as low.  相似文献   

16.
Ophiocordyceps sinensis (≡Cordyceps sinensis) is one of the best known traditional Chinese medicines, with great benefits to human health and huge economic value. The reliability of fungal materials used in studies of the species is particularly important because contradictory results have been found in various studies in the past decades. Examination of fungal materials specified in reports on O. sinensis showed great variation in both sources and culture conditions of living strains. To test the reliability of the materials used, experiments were carried out to study the effect of culture conditions on the growth of living strains of O. sinensis by using six reliable strains representing the major production regions of the fungus on the Tibetan Plateau. The results showed that O. sinensis is a slow-growing fungus at comparatively low temperature, and that temperature and growth period are crucial factors which can be verified by experiment. Analyses of fungal materials used in 152 papers on O. sinensis from PubMed since 1998 showed that 41 papers lacked detailed information on the fungal materials; 26 used natural products, 11 used artificially cultivated fruit bodies, and 80 used fermentation products from living strains. Of the latter category (using fermentation products), 64 of the papers were found to use unreliable (45) or uncertain (19) strains for fermentation products based on the temperature and growth period for O. sinensis strains verified in this study. Apart from the natural products of O. sinensis, which require scientific identification, a total of at least 116 papers (over three-quarters) used unreliable, uncertain or unspecified materials, including so-called cultivated fruit bodies which were apparently from other species. The reliability of materials or living strains used in studies on O. sinensis is discussed in this paper, and suggestions are made for use of reliable fungal materials in further studies of this fungus.  相似文献   

17.
Endophytic fungi are broadly dispersed residing inside plant tissues and have been demonstrated as a treasure for bioactive natural products. Unexplored harsh and heavy metal contaminant habitat of Avicennia marina may have diverse and potential fungal association. Therefore, this work aimed to isolate the culturable fungal endophytes associated with leaves of A. marina and to evaluate their medical potentialities. Seventeen isolates of endophyte fungi were isolated from healthy leaves and their antimicrobial activities were evaluated. Results showed that isolates had activity against micro-organisms in addition to their antioxidant activity produced a variety of phenolic compounds, besides exhibited a lowest cytotoxicity against ATCC-CCL-81 cell line. Consequently, selected endophytic fungal isolates were identified genetically as Chaetomium sp., Chaetomium madrasense, Chaetomium sp., Chaetomium globosum, Aspergillus hiratsukae, Aspergillus ochraceus, Alternaria tenuissima and Curvularia lunata with gene bank accession numbers MT089951, MT089952, MT089953, MT089954, MT089955, MT089956, MT089957 and MT089958 respectively. The most potent fungus extract was analysed using Gas chromatography–mass spectrometry which verified the presence of numerous bioactive compounds. These findings confirmed that new endophytic fungal strains derived from A. marina thrive in harsh ecosystem produce bioactive metabolites which can be recommended as a novel source for drug discovery.  相似文献   

18.
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.  相似文献   

19.
An investigation on the secondary metabolites from the BuOH extract of the fermentation broth of the thermotolerant polyester‐degrading actinomycete Actinomadura miaoliensis BCRC 16873 was carried out. One previously undescribed α‐pyrone (=pyran‐2‐one) derivative, designated as miaolienone ( 1 ), and a new butanolide, miaolinolide ( 2 ), together with 13 known compounds, 3 – 15 , were obtained. Their structures were established on the basis of extensive 1D‐ and 2D‐NMR analyses in combination with HR‐MS experiments. In addition, the isolated compounds 1 – 15 were evaluated for the inhibitory effects of the isolates on the production of tumor necrosis factor (TNF‐α) induced by lipopolysaccharide (LPS). Among the isolates, 1 and 2 significantly inhibited TNF‐α production in U937 cells in vitro, and the IC50 values were 0.59 and 0.76 μM , respectively. Compounds 3 – 5 displayed moderate inhibitory activities on LPS‐induced TNF‐α production.  相似文献   

20.
Thielaviopsis basicola is a hemibiotroph fungus that causes black root rot disease in diverse plants with significant impact on cotton production in Australia. To elucidate how T. basicola growth and proteome are influenced by interactions with natural sources, this fungus was cultured in the presence of root extracts from non‐host (wheat, hairy vetch) and susceptible host (cotton, lupin) plants. We found that T. basicola growth was significantly favored in the presence of host extracts, while hierarchical clustering analysis of 2‐DE protein profiles of T. basicola showed plant species had a larger effect on the proteome than host/non‐host status. Analysis by LC‐MS/MS of unique and differentially expressed spots and identification using cross‐species similarity searching and de novo sequencing allowed successful identification of 41 spots. These proteins were principally involved in primary metabolism with smaller numbers implicated in other diverse functions. Identification of several “morpho” proteins suggested morphological differences that were further microscopically investigated. Identification of several highly expressed spots suggested that vitamin B6 is important in the T. basicola response to components present in hairy vetch extract, and finally, three spots, induced in the presence of lupin extract, may correspond to malic enzyme and be involved in lipid accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号