首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid‐tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN‐ARS‐based CRISPR‐Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site‐specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR‐Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.  相似文献   

3.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

4.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

5.
In budding yeasts, fermentation in the presence of oxygen evolved around the time of a whole genome duplication (WGD) and is thought to confer dominance in high‐sugar environments because ethanol is toxic to many species. Although there are many fermentative yeast species, only Saccharomyces cerevisiae consistently dominates wine fermentations. In this study, we use coculture experiments and intrinsic growth rate assays to examine the relative fitness of non‐WGD and WGD yeast species across environments to assess when S. cerevisiae’s ability to dominate high‐sugar environments arose. We show that S. cerevisiae dominates nearly all other non‐WGD and WGD species except for its sibling species S. paradoxus in both grape juice and a high‐sugar rich medium. Of the species we tested, S. cerevisiae and S. paradoxus have evolved the highest ethanol tolerance and intrinsic growth rate in grape juice. However, the ability of S. cerevisiae and S. paradoxus to dominate certain species depends on the temperature and the type of high‐sugar environment. Our results indicate that dominance of high‐sugar environments evolved much more recently than the WGD, most likely just prior to or during the differentiation of Saccharomyces species, and that evolution of multiple traits contributes to S. cerevisiae's ability to dominate wine fermentations.  相似文献   

6.
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild‐type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high‐ethanol‐producing strain was obtained. Designated as TJ2‐3, this strain could ferment xylose and produce 1.5 times more ethanol than wild‐type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.  相似文献   

7.
Dicarboxylic acids are important bio‐based building blocks, and Saccharomyces cerevisiae is postulated to be an advantageous host for their fermentative production. Here, we engineered a pyruvate decarboxylase‐negative S. cerevisiae strain for succinic acid production to exploit its promising properties, that is, lack of ethanol production and accumulation of the precursor pyruvate. The metabolic engineering steps included genomic integration of a biosynthesis pathway based on the reductive branch of the tricarboxylic acid cycle and a dicarboxylic acid transporter. Further modifications were the combined deletion of GPD1 and FUM1 and multi‐copy integration of the native PYC2 gene, encoding a pyruvate carboxylase required to drain pyruvate into the synthesis pathway. The effect of increased redox cofactor supply was tested by modulating oxygen limitation and supplementing formate. The physiologic analysis of the differently engineered strains focused on elucidating metabolic bottlenecks. The data not only highlight the importance of a balanced activity of pathway enzymes and selective export systems but also shows the importance to find an optimal trade‐off between redox cofactor supply and energy availability in the form of ATP.  相似文献   

8.
9.
The ability of baker’s yeast Saccharomyces cerevisiae and of the thermotolerant methylotrophic yeast Hansenula polymorpha to produce ethanol during alcoholic fermentation of glucose was compared between wild-type strains and recombinant strains possessing an elevated level of intracellular glutathione (GSH) due to overexpression of the first gene of GSH biosynthesis, gamma-glutamylcysteine synthetase, or of the central regulatory gene of sulfur metabolism, MET4. The analyzed strains of H. polymorpha with an elevated pool of intracellular GSH were found to accumulate almost twice as much ethanol as the wild-type strain during glucose fermentation, in contrast to GSH1-overexpressing S. cerevisiae strains, which also possessed an elevated pool of GSH. The ethanol tolerance of the GSH-overproducing strains was also determined. For this, the wild-type strain and transformants with an elevated GSH pool were compared for their viability upon exposure to exogenous ethanol. Unexpectedly, both S. cerevisiae and H. polymorpha transformants with a high GSH pool proved more sensitive to exogenous ethanol than the corresponding wild-type strains.  相似文献   

10.
β‐poly (L‐malic acid) (PMLA) is a biopolyester which has attracted industrial interest for its potential application in medicine and other industries. A high dissolved oxygen concentration (DO) was beneficial for PMLA production, while the mechanisms of DO in PMLA biosynthesis by Aureobasidium pullulans are still poorly understood. In this work, the amount of PMLA was first compared when A. pullulans ipe‐1 were cultured under a high DO level (70% saturation) and a low DO level (10% saturation). Meanwhile, the key enzymes involved in different pathways of the precursor L‐malic acid biosynthesis were studied. The results revealed that the activities of glucose‐6‐phosphate dehydrogenase (G6PDH) and phosphoenolpyruvate carboxylase (PEPC) were positively correlated with cell growth and PMLA production, while the activities of phosphofructokinases (PFK), pyruvic carboxylase (PC) and citrate synthetase (CS) did no show such correlations. It indicated that the Pentose Phosphate Pathway (PPP) may play a vital role in cell growth and PMLA biosynthesis. Moreover, the precursor L‐malic acid for PMLA biosynthesis was mainly biosynthesized through phosphoenolpyruvic acid (PEP) via oxaloacetate catalyzed by PEPC. It was also found that low concentration of sodium fluoride (NaF) might impel carbon flux flow to the oxaloacetate through PEP, but inhibit the flux to the oxaloacetate via pyruvic acid.  相似文献   

11.
Glycerol production by Saccharomyces cerevisiae, which is required for redox-cofactor balancing in anaerobic cultures, causes yield reduction in industrial bioethanol production. Recently, glycerol formation in anaerobic S. cerevisiae cultures was eliminated by expressing Escherichia coli (acetylating) acetaldehyde dehydrogenase (encoded by mhpF) and simultaneously deleting the GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase, thus coupling NADH reoxidation to reduction of acetate to ethanol. Gpd strains are, however, sensitive to high sugar concentrations, which complicates industrial implementation of this metabolic engineering concept. In this study, laboratory evolution was used to improve osmotolerance of a Gpd mhpF-expressing S. cerevisiae strain. Serial batch cultivation at increasing osmotic pressure enabled isolation of an evolved strain that grew anaerobically at 1 M glucose, at a specific growth rate of 0.12 h−1. The evolved strain produced glycerol at low concentrations (0.64 ± 0.33 g l−1). However, these glycerol concentrations were below 10% of those observed with a Gpd+ reference strain. Consequently, the ethanol yield on sugar increased from 79% of the theoretical maximum in the reference strain to 92% for the evolved strains. Genetic analysis indicated that osmotolerance under aerobic conditions required a single dominant chromosomal mutation, and one further mutation in the plasmid-borne mhpF gene for anaerobic growth.  相似文献   

12.
Summary By screening seven distillers' yeast strains, two strains ofSaccharomyces cerevisiae were identified as being either slow or fast ethanol producers. The levels of four key enzymes, invertase, pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ADD) in these strains during batch-fermentative production of ethanol were determined. In both strains, the levels of these enzymes varied during the fermentation. The fast-fermenting strain had higher levels of PDC and ADH, and lower levels of ADD, as compared to the slow-fermenting strain, at all stages of fermentation.
Resumen Al hacer un muestreo siete levaduras de cerveza se han identificado dos cepas deSaccharomyces cerevisiae, caracterizandolas como productoras lenta y rápida de etanol. Para ambas cepas se determinaron, en el periodo de crecimiento exponencial los niveles de cuatro enzimas clave: invertasa, piruvato decarboxilasa (PDC), alcohol deshidrogenas (ADH) y aldehido deshidrogenasa (ADD). Los niveles de estos enzimas variaron durante la fermentación en las dos cepas. Los niveles de PDC y de ADH fueron más bajos y el nivel de ADD más bajo en la cepa fermentadora rápida comparada con la cepa fermentadora lenta.

Résumé Par criblage de sept levures de distillerie, nous avons identifié deux souches deSaccharomyces cerevisiae produisant de l'éthanol, l'une rapidement et l'autre lentement. Les niveaux des quatre enzymes-clés, invertase, pyruvique décarboxylase (PDC), alcool déshydrogénase (ADH) et aldéhyde déshydrogénase (ADD) ont été déterminés chez ces souches pendant la production fermentative d'éthanol en batch. Chez les deux souches, les niveaux enzymatiques varient au cours de la fermentation. A tous les stades de celle-ci, la souche rapide présente un niveau élevé de PDC et ADH, et un niveau d'ADD inférieur à celui de la souche lente.
  相似文献   

13.
Saccharomyces kluyveri is a petite-negative yeast, which is less prone to form ethanol under aerobic conditions than is S. cerevisiae. The first reaction on the route from pyruvate to ethanol is catalysed by pyruvate decarboxylase, and the differences observed between S. kluyveri and S. cerevisiae with respect to ethanol formation under aerobic conditions could be caused by differences in the regulation of this enzyme activity. We have identified and cloned three genes encoding functional pyruvate decarboxylase enzymes ( PDC genes) from the type strain of S. kluyveri (Sk-PDC11, Sk-PDC12 and Sk-PDC13). The regulation of pyruvate decarboxylase in S. kluyveri was studied by measuring the total level of Sk-PDC mRNA and the overall enzyme activity under various growth conditions. It was found that the level of Sk-PDC mRNA was enhanced by glucose and oxygen limitation, and that the level of enzyme activity was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae and S. kluyveri each have three PDC genes, these have apparently arisen by independent duplications and specializations in each of the two yeast lineages.Communicated by C. P. Hollenberg  相似文献   

14.
The yeast Saccharomyces cerevisiae produces ethanol and glycerol as major unwanted byproducts, unless ethanol and glycerol are the target compounds. Minimizing the levels of these byproducts is important for bioproduction processes using yeast cells. In this study, we constructed a yeast strain in which both ethanol and glycerol production pathways were disrupted and examined its culture characteristics. In wild-type yeast strain, metabolic pathways that produce ethanol and glycerol play an important role in reoxidizing nicotinamide adenine dinucleotide (NADH) generated during glycolysis, particularly under anaerobic conditions. Strains in which both pathways were disrupted therefore failed to grow and consume glucose under anaerobic conditions. Introduction of desired metabolic reaction(s) coupled with NADH oxidation enabled the engineered strain to consume substrate and produce target compound(s). Here we introduced NADH-oxidization-coupled L-lactate production mechanisms into a yeast strain incapable of ethanol and glycerol biosynthesis, based on in silico simulation using a genome-scale metabolic model of S. cerevisiae. From the results of in silico simulation based on flux balance analysis, a feasible anaerobic non-growing metabolic state, in which L-lactate yield approached the theoretical maximum, was identified and this phenomenon was verified experimentally. The yeast strain incapable of both ethanol and glycerol biosynthesis is a potentially valuable host for bioproduction coupled with NADH oxidation under anaerobic conditions.  相似文献   

15.
The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase.  相似文献   

16.
Summary Zymomonas mobilis strains were compared with each other and with a Saacharomyces cerevisiae strain for the production of ethanol from sugar cane molasses in batch fermentations. The effect of pH and temperature on ethanol production by Zymomonas was studied. The ability of Z. mobilis to produce ethanol from molasses varied from one strain to another. At low sugar concentrations Zymomonas compared favourably with S. cerevisiae. However, at higher sugar concentrations the yeast produced considerably more ethanol than Zymomonas.  相似文献   

17.
Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and major role in industrial bioethanol production, has several advantages due to its high ethanol productivity, as well as its high ethanol and inhibitor tolerance. However, this yeast cannot ferment xylose, which is the dominant pentose sugar in hydrolysates of lignocellulosic biomass. A number of different strategies have been applied to engineer yeasts capable of efficiently producing ethanol from xylose, including the introduction of initial xylose metabolism and xylose transport, changing the intracellular redox balance, and overexpression of xylulokinase and pentose phosphate pathways. In this review, recent progress with regard to these studies is discussed, focusing particularly on xylose-fermenting strains of S. cerevisiae. Recent studies using several promising approaches such as host strain selection and adaptation to obtain further improved xylose-utilizing S. cerevisiae are also addressed.  相似文献   

18.
Summary Transport and utilization of malic acid by the yeast Hansenula anomala are subject to glucose repression. Derepressed diploid mutant strains were obtained by hybridization of derepressed haploid mutant strains of opposite mating type. Six diploid mutant strains displayed derepressed behaviour with respect to malic acid utilization in the presence of glucose up to 30% (w/v). Three of these diploid mutant strains, as compared with the parent strain, were able to degrade completely malic acid in grape juice without fermenting the sugars. In addition, using one diploid mutant strain together with a strain of the wine yeast Saccharomyces cerevisiae, it was possible to carry out a mixedmicrovinification in which deacidification occurred simultaneously with alcoholic fermentation.  相似文献   

19.
Industrial applications for lactate, such as the production of chemicals, has led to interest in producing this organic acid by metabolically engineered a yeast such as Saccharomyces cerevisiae, which is more acid tolerant than lactic acid bacteria. This paper deals with lactate production by S. cerevisiae K1-LDH, in which the Lactobacillus plantarum lactate dehydrogenase (LDH) gene is integrated into the genome of the wine yeast strain K1. We show that a vitamin, nicotinic acid (NiA), was the limiting factor for lactate production during fermentation with the K1-LDH strain. Increasing the NiA concentration in batch conditions or in the medium used to feed chemostats affected the lactate yield. Moreover, the addition of pulses of NiA or the exponential addition of NiA made it possible to control the lactate production kinetics throughout the fermentation process. The results point to the role of NiA in the regulation of metabolic pathways, but the physiological mechanisms remain poorly understood.  相似文献   

20.
Lactobacillus plantarum ferments glucose through the Embden–Meyerhof–Parnas pathway: the central metabolite pyruvate is converted into lactate via lactate dehydrogenase (LDH). By substituting LDH with pyruvate decarboxylase (PDC) activity, pyruvate may be redirected toward ethanol production instead of lactic acid fermentation. A PDC gene from the Gram-positive bacterium Sarcina ventriculi (Spdc) was introduced into an LDH-deficient strain, L. plantarum TF103, in which both the ldhL and ldhD genes were inactivated. Four different fusion genes between Spdc and either the S. ventriculi promoter or three Lactococcus lactis promoters in pTRKH2 were introduced into TF103. PDC activity was detected in all four recombinant strains. The engineered strains were examined for production of ethanol and other metabolites in flask fermentations. The recombinant strains grew slightly faster than the parent TF103 and produced 90–130 mM ethanol. Although slightly more ethanol was observed, carbon flow was not significantly improved toward ethanol, suggesting that a further understanding of this organism’s metabolism is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号