首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth rate of abalone post larvae of Haliotis rufescens fed ad libitum with a benthic monoalgal diatom culture maintained as monocultures on a semi-commercial scale, was evaluated and correlated with the biochemical composition of the diatoms. The cell size (7.0 × 4.0 μm to 21.0 × 7.5 μm), protein percentage (7.42% to 13.66%), and ash content (49.03% to 59.61%) were different among diatom strains; lipid percentage, nitrogen free extract, and energy content (Kcal g−1) were similar among diatom strains. The values of essential and non-essential amino and fatty acids composition differed among diatom strains. Differences in the abalone shell length and orthogonal analyses revealed postlarval growth was dependent on the quality of the food source. Postlarvae abalone displaying the longest shell lengths were fed Nitzschia thermalis var. minor and Amphiprora paludosa var. hyalina (1,712.0 ± 61 μm and 1,709 ± 67 μm, respectively), followed by Navicula incerta (1,413.3 ± 43 μm). The fatty acid content of benthic diatoms and abalone growth rate were not correlated.  相似文献   

2.
Recent studies on global climate change report that increase in seawater temperature leads to coastal ecosystem change, including coral bleaching in the tropic. In order to assess the effect of increased seawater temperature on a temperate coastal ecosystem, we studied the inter-annual variation in productivity of Laminaria japonica using long-term oceanographic observations for the Uwa Sea, southern Japan. The annual productivity estimates for L. japonica were 2.7 ± 2.5 (mean ± SD) kg wet wt. m−1 (length of rope) (2003/2004), 1.0 ± 0.6 kg wet wt. m−1 (2004/2005) and 12.1 ± 12.5 kg wet wt. m−1 (2005/2006). Our previous study using the same methodology at the same locality reported that the productivity was estimated for the 2001/2002 (33.3 ± 15.2 kg wet wt. m−1) and 2002/2003 (34.0 ± 8.7 kg wet wt. m−1) seasons. Productivity in 2003/2004 and 2004/2005 was significantly lower than in years 2001/2002, 2002/2003 and 2005/2006. A comparison of oceanographic conditions among the 5 years revealed the presence of threshold seawater temperature effects. When the average seawater temperature during the first 45 days of each experiment exceeded 15.5°C, productivity was reduced to about 10 % of that in cooler years. Moreover the analysis of growth and erosion rates indicates that when the seawater temperature was over 17.5°C, erosion rate exceeded growth rate. Thus, an increase of seawater temperature of just 1°C during winter drastically reduces the productivity of L. japonica in the Uwa Sea.  相似文献   

3.
The effects of UVB radiation on the different developmental stages of the carrageenan-producing red alga Iridaea cordata were evaluated considering: (1) carpospore and discoid germling mortality; (2) growth rates and morphology of young tetrasporophytes; and (3) growth rates and pigment content of field-collected plant fragments. Unialgal cultures were submitted to 0.17, 0.5, or 0.83 W m−2 of UVB radiation for 3 h per day. The general culture conditions were as follows: 12 h light/12 h dark cycles; irradiance of 55 μmol photon.per square meter per second; temperature of 9 ± 1°C; and seawater enriched with Provasoli solution. All UVB irradiation treatments were harmful to carpospores ( 0.17  \textW \textm - 2 = 40.9 ±6.9% 0.17\;{\text{W}}\,{{\text{m}}^{ - 2}} = 40.9 \pm 6.9\% , 0.5  \textW \textm - 2 = 59.8 ±13.4% 0.5\;{\text{W}}\,{{\text{m}}^{ - 2}} = 59.8 \pm 13.4\% , 0.83  \textW \textm - 2 = 49 ±17.4% 0.83\;{\text{W}}\,{{\text{m}}^{ - 2}} = 49 \pm 17.4\% mortality in 3 days). Even though the mortality of all discoid germlings exposed to UVB radiation was unchanged when compared to the control, those germlings exposed to 0.5 and 0.83 W m−2 treatments became paler and had smaller diameters than those cultivated under control treatment. Decreases in growth rates were observed in young tetrasporophytes, mainly in 0.5 and 0.83 W m−2 treatments. Similar effects were only observed in fragments of adult plants cultivated at 0.83 W m−2. Additionally, UVB radiation caused morphological changes in fragments of adult plants in the first week, while the young individuals only displayed this pattern during the third week. The verified morphological alterations in I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, a high level of radiation appears to produce irreparable damage, especially under long-term exposure. Our results suggest that the sensitivity to ultraviolet radiation decreases with increased algal age and that the various developmental stages have different responses when exposed to the same doses of UVB radiation.  相似文献   

4.
Codium fragile (Suringar) Hariot is an edible green alga farmed in Korea using seed stock produced from regeneration of isolated utricles and medullary filaments. Experiments were conducted to reveal the optimal conditions for nursery culture and out-growing of C. fragile. Sampling and measurement of underwater irradiance were carried out at farms cultivating C. fragile at Wando, on the southwestern coast of Korea, from October 2004 to August 2005. Growth of erect thalli and underwater irradiance were measured over a range of depths for three culture stages. During the nursery cultivation stage (Stage I), growth rate was greatest at 0.5 m depth (0.055 ± 0.032 mm day−1), where the average midday irradiance over 60 days was 924 ± 32 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest growth rate occurred at a depth of 2 m (0.113 ± 0.003 mm day−1) with an average irradiance of 248 ± 116 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli achieved the greatest increase in biomass at 1 m depth (7.2 ± 1.0 kg fresh wt m−1). These results suggest that optimal growth at each cultivation stages of C. fragile could be controlled by depth of cultivation rope.  相似文献   

5.
High levels of ultraviolet-B radiation (UVB) could represent a danger to seaweeds by affecting their physiological processes and development. The aim of this work was to study the effects of UVB radiation on early developmental stages of commercially and ecologically important marine algal species in southern Chile, considering spores survival and embryos growth. Spores of Mazzaella laminarioides, Gigartina skottsbergii, Sarcothalia crispata and embryos of G. skottsbergii and Macrocystis pyrifera were submitted to treatments of a) photosynthetically active radiation (PAR: Control), b) PAR+UVA (PA) and c) PAR+UVA+UVB (PAB). UV radiation did not affect spore survival of M. laminarioides S. crispata and G. skottsbergii (P = 0.55, P = 0.6 & P = 0.25 respectively), but did provoke differences in the growth rate of G. skottsbergii embryos (P = 0.00). Differences in survival and growth of M. pyrifera embryos were also observed (P = 0.001 & P = 0.007, respectively). Differences in growth of M. pyrifera embryos were observed only in the first five days, whereas changes in survival persisted until the end of the experiment. Additionally, UVB provoked morphological alteration in M. pyrifera embryos, as evidenced by progressive curling. These results suggest that the initial stages of the subtidal algae species G. skottsbergii and M. pyrifera cultivated in laboratory conditions were sensitive to UVA and UVB radiation, and their recruitment and development could be affected as well in natural conditions found in southern South America, where the ozone layer has thinned more than in other parts of the planet.  相似文献   

6.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

7.
The taxonomy of Saimiri is controversial because morphological characteristics, traditionally used for identification, are insufficient to distinguish species and subspecies. Genetic studies of specimens become relevant for captive management, especially considering their frequently unknown geographical origin. We analyzed phenotypic and genetic parameters in Saimiri spp. in Argentinean zoological gardens and biological stations to provide a more accurate taxonomic identification. We studied 27 males and 19 females of Saimiri spp. The cytogenetic analysis in mitotic metaphases corroborated a modal number of 2N = 44, XX/XY, and FN = 75 for males and FN = 76 for females. G- and C-bands, fluorescence in situ hybridization (FISH) and the pelage coloration pattern of all the specimens corresponded to Saimiri boliviensis boliviensis. We characterized for the first time the sperm cell morphology and morphometry (mean ± SE): total length: 71.39 ± 5.40 μm; head length: 5.71 ± 0.81 μm; head width: 3.76 ± 0.70 μm; acrosome length: 3.70 ± 0.82 μm; midpiece length: 12.20 ± 2.22 μm. Researchers can use the characterization of the sperm morphology as another parameter for taxonomic identification that, together with cytogenetic and molecular ones, would allow a more precise identification of individual Saimiri boliviensis boliviensis.  相似文献   

8.
This study was aimed at determining the optimal depth and photon irradiance for growth of Sargassum fulvellum. Sampling and measurement of underwater irradiance were carried out at farms cultivating S. fulvellum at Wando, southwestern coast of Korea, from May 2004 to April 2005. Growth of thalli, underwater irradiance and photosynthetic quantum yield were measured over a range of depths for three culture stages. During their nursery cultivation stage (Stage I), length increase was greatest at 1.5 m depth (2.5 ± 0.2 cm), where the average midday irradiance over 28 days was 488 ± 58 μmol photons m−2 s−1. During the pre-main cultivation stage (Stage II), the greatest length increase occurred at 1 m depth (10.9 ± 0.1 cm) with an average irradiance of 845 ± 169 μmol photons m−2 s−1. For the main cultivation stage (Stage III) of the alga, thalli showed maximal length growth in March and early April at depths of 1–2 m and 3 m. These results suggest that growth at each cultivation stage of S. fulvellum could be controlled by depth of cultivation rope. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

9.
Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7 ± 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 ± 0.5 mM; +GLU 12.35 ± 1.3 mM; +GLU + MPP 18.1 ± 1.8 mM), acetate (Ctrl 0.84 ± 0.13 mM: +GLU 1.3 ± 0.15 mM; +GLU + MPP 2.7 ± 0.4 mM), fumarate, and a-ketoglutarate (<10 μM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of l-alanine (1.6 ± .052 mM), l-glutamate (285 ± 9.7 μM), l-asparagine (202 ± 2.1 μM), and l-aspartate (84.2 ± 4.9 μM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2,4-dinitrophenylhydrazine—Brady's reagent), acetoin (Voges–Proskauer test), or alcohols (NAD+-linked alcohol dehydrogenase). In conclusion, these results provide preliminary evidence to suggest the existence of an active pyruvate–alanine transaminase or phosphotransacetylase/acetyl-CoA synthetase pathway to be involved with anaerobic energy metabolism of cancer cells.  相似文献   

10.
To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm2 vs. 46.26 ± 6.8 cm2, respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (−0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (−0.78 ± 0.28 cm vs.−0.11 ± 0.07 cm), root volume (−0.49 ± 0.22 cm3 vs. 0.06 ± 0.07 cm3), and surface area (−0.59 ± 0.23 cm2 vs.−0.03 ± 0.08 cm2). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.  相似文献   

11.
Antioxidant activities of both cells and extracellular substances were evaluated in 12 soil-isolated strains of microalgae according to FRAP and DPPH-HPLC assays. Their total phenolic contents were also determined by Folin–Ciocalteu method. Extractions were performed with hexane, ethyl acetate, and water. The results of FRAP assay showed that algal cells contained considerable amounts of antioxidants from 0.56 ± 0.06 to 31.06 ± 4.00 μmol Trolox g−1 for Microchaete tenera hexane extract and Chlorella vulgaris water extract, respectively. In water fractions of extracellular substances, the antioxidants were from 1.30 ± 0.15 μmol Trolox g−1 for Fischerella musicola to 73.20 ± 0.16 μmol Trolox g−1 for Fischerella ambigua. Also, DPPH-HPLC assay represented high antioxidant potential of water fractions. The measured radical-scavenging activities of the studied microalgae were at least 0.15 ± 0.02 in Nostoc ellipsosporum cell mass to a maximum of 109.02 ± 8.25 in C. vulgaris extracellular substance. The amount of total phenolic contents varied in different strains of microalgae and ranged from zero in hexane extract to 19.15 ± 0.04 mg GAE g−1 in C. vulgaris extracellular water fraction. Significant correlation coefficients between two measured parameters indicated that phenolic compounds were a major contributor to the microalgal antioxidant capacities.  相似文献   

12.
White rot fungi are a promising option to treat recalcitrant organic molecules, such as lignin, polycyclic aromatic hydrocarbons, and textile dyes, because of the lignin-modifying enzymes (LMEs) they secrete. Because knowledge of the kinetic parameters is important to better design and operate bioreactors to cultivate these fungi for degradation and/or to produce LME(s), these parameters were determined using Trametes versicolor ATCC 20869 (ATCC, American Type Culture Collection) in a magnetic stir bar reactor. A complete set of kinetic data has not been previously published for this culture. Higher than previously reported growth rates with high laccase production of up to 1,385 U l−1 occurred during growth without or glucose limitation. The maximum specific growth rate averaged 0.94 ± 0.23 day−1, whereas the maximum specific substrate consumption rates for glucose and ammonium were 3.37 ± 1.16 and 0.15 ± 0.04 day−1, respectively. The maximum specific oxygen consumption rate was 1.63 ± 0.36 day−1.  相似文献   

13.
The effects of UVB radiation on the growth of macroalgal thalli were evaluated using tetrasporophytic fronds of the Rhodophytes Gigartina skottsbergii, Sarcothalia crispata and Mazzaella laminarioides. The tetrasporophytic fronds were collected from nature and the tetrasporophyte sporelings grown in a temperature regulated chamber at 8 ± 2 C with a 12L:12D (Light: Dark) photoperiod, Photosynthetically Active Radiation (PAR) of 55 μmol photons m−2 s−1 and seawater enriched with 20 mL L−1 of Provasoli medium. We exposed the thalli of these macroalgae to PAR (55 μmol photons m−2 s−1) and three treatments using a combination of PAR with three different levels of UVB radiation (0.10, 0.15 and 0.23 W m−2 for G. skottsbergii and S. crispata and 0.02, 0.05 and 0.10 W m−2 for M. laminarioides) during a period of 71 days. Growth of thalli was quantified by measuring their length using digitized photographs of samples.Important differences were detected in the growth of individuals cultured under the effects of UVB radiation, when compared to the control (i.e. plants exposed to PAR only). In the case of G. skottsbergii and S. crispata higher levels of UVB radiation resulted in slower growth of thalli. In nearly all measurements for the first two species, UVB radiation levels of 0.1 W m−2 induced differences in thallus growth, while for M. laminarioides levels of UVB radiation of 0.1 W m−2 were effective only after a prolonged period of exposure.Differential effects of UVB radiation on G. skottsbergii, S. crispata and M. laminarioides could interfere with the natural populations of these economically important macroalgal species in southern Chile, where they occur under the annual influence of the Antarctic Ozone Hole and the general thinning of the ozone layer.  相似文献   

14.
In the course of a microbial screening of soil samples for new oxidases, different enrichment strategies were carried out. With choline as the only carbon source, a microorganism was isolated and identified as Arthrobacter nicotianae. From this strain, a gene coding for a choline oxidase was isolated from chromosomal DNA. This gene named codA was cloned in Escherichia coli BL21-Gold and the protein (An_CodA) heterologously overexpressed as a soluble intracellular protein of 59.1 kDa. Basic biochemical characterization of purified protein revealed a pH optimum of 7.4 and activity over a broad temperature range (15–70 °C). Specific activities were determined toward choline chloride (4.70 ± 0.12 U/mg) and the synthetic analogs bis(2-hydroxyethyl)-dimethylammonium chloride (0.05 ± 0.45 × 10–2 U/mg) and tris-(2-hydroxyethyl)-methylammonium methylsulfate (0.01 ± 0.12 × 10–2 U/mg). With increasing number of oxidizable groups, a significant decrease in activity was noted. Determination of kinetic parameters in atmorspheric oxygen resulted in K M = 1.51 ± 0.09 mM and V max = 42.73 ± 0.42 mU/min for choline chloride and K M = 4.77 ± 0.76 mM and V max = 48.40 ± 2.88 mU/min for the reaction intermediate betaine aldehyde respectively. Nuclear magnetic resonance spectroscopic analysis of the products formed during the enzyme reaction with choline chloride showed that in vitro the intermediate betaine aldehyde exists also free in solution.  相似文献   

15.
Recently recruited urchins from the same brood, but with different initial sizes, may respond differently to similar environmental factors. The aim of this study was to assess and compare the effects of starvation and diet on the survival, growth rates in size and weight, and gonad index among small and large sub-adult purple sea urchins, Strongylocentrotus purpuratus. Small urchins ranged from 7.3 to 7.8 mm and large urchins from 11.8 to 14.1 mm (test diameters). Two independent experiments were performed. In the first experiment, sea urchins were fed during 22 weeks on Egregia menziesii (ad libitum) and for only 1 day month−1 (starved condition). Feeding regime significantly affected survival, somatic growth rate in size and weight, and gonad index, with higher means in the ad libitum treatments than in starving conditions. A recurrent cannibalism event by conspecifics occurred in small sea urchins under starving conditions. In the second experiment, sea urchins were fed during 13 weeks ad libitum with four diets: kelp (E. menziesii), coralline algae (Bossiella orbigniana), eelgrass (Phyllospadix scouleri) and a mixed diet of the three species. Survival was not affected by diet or urchin size, but diet significantly affected somatic growth rate in size and weight and gonad index. Kelp promoted the highest growth rate (2.23 ± 0.21 mm month−1), the mixed diet produced an intermediate growth (1.26 ± 0.21 mm month−1), while the lowest values corresponded to coralline algae and the eelgrass (0.30 ± 0.12 and 0.10 ± 0.03 mm month−1, respectively, means ± SE). The mean growth rate of small urchins (averaging all diets) was higher than in large specimens (1.17 ± 0.37 and 0.77 ± 0.28 mm month−1, respectively).  相似文献   

16.
The main product of the conversion of puerarin by unpermeabilized cells of bacterium Microbacterium oxydans CGMCC 1788 was puerarin-7-O-glucoside (241 ± 31.9 μM). Permeabilization with 40% ethanol could not increase conversion yield, whereas it resulted in change of main product; a previous trace product became a main product (213 ± 48.0 μM) which was identified as a novel puerarin-7-O-fructoside by electrospray ionization time-of-flight MS, 13C NMR, 1H NMR, and GC-MS analysis of sugar composition, and puerarin-7-O-glucoside became a trace product (14.8 ± 5.4 μM). However, the extract from cells of M. oxydans CGMCC 1788 permeabilized with ethanol converted puerarin to form 113.9 ± 27.7 μM puerarin-7-O-glucoside and 187.8 ± 29.5 μM puerarin-7-O-fructoside under the same conditions. When unpermeabilized intact cells were recovered and used repeatedly for the conversion of puerarin, with increase of reuse times, the yield of puerarin-7-O-glucoside gradually decreased, whereas the yield of puerarin-7-O-fructoside increased gradually in the conversion mixture. The main product of the conversion of puerarin by the tenth recycled unpremerbilized cells was puerarin-7-O-fructoside (288.4 ± 24.0 μM). Therefore, the change of permeability of cell membrane of bacterium M. oxydans CGMCC 1788 contributed to the change of conversion of the product’s composition.  相似文献   

17.
In this study the red alga, Gracilaria lemaneiformis, was cultivated with the scallop Chlamys farreri in an integrated multi-trophic aquaculture (IMTA) system for 3 weeks at the Marine Aquaculture Laboratory of the Institute of Oceanology, Chinese Academy of Sciences (IOCAS) in Qingdao, Shandong Province, North China. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus from scallop excretion were determined. The experiment included four treatments each with three replicates, and three scallop monoculture systems served as the control. Scallop density (407.9 ± 2.84 g m−3) remained the same in all treatments while seaweed density differed. The seaweed density was set at four levels (treatments 1, 2, 3, 4) with thallus wet weight of 69.3 ± 3.21, 139.1 ± 3.80, 263.5 ± 6.83, and 347.6 ± 6.30 g m−3, respectively. There were no significant differences in the initial nitrogen and phosphorus concentration between each treatment and the control group (ANOVA, p > 0.05). The results showed that at the end of the experiment, the nitrogen concentration in the control group and treatment 1 was significantly higher than in the other treatments. There was also a significant difference in phosphorus concentration between the control group and the IMTA treatments (ANOVA, p < 0.05). Growth rate, C and N content of the thallus, and mortality of scallop was different between the IMTA treatments. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus changed with different cultivation density and time. The maximum reduction efficiency of ammonium and phosphorus was 83.7% and 70.4%, respectively. The maximum uptake rate of ammonium and phosphorus was 6.3 and 3.3 μmol g−1 DW h−1. A bivalve/seaweed biomass ratio from 1:0.33 to 1:0.80 (treatments 2, 3, and 4) was preferable for efficient nutrient uptake and for maintaining lower nutrient levels. Results indicate that G. lemaneiformis can efficiently absorb the ammonium and phosphorus from scallop excretion and is a suitable candidate for IMTA.  相似文献   

18.
Kappaphycus striatum var. sacol was grown in two separate studies: (1) at two stocking densities, and (2) at four different depths, each for three different durations of culture (30, 45 and 60 days) in order to determine the growth rate of the seaweed and evaluate the carrageenan content and its molecular weight. The results demonstrated that stocking density, duration of culture and depth significantly (P < 0.01) affected the growth rate, carrageenan content and molecular weight of K. striatum var. sacol. Decreasing growth rate was observed at both stocking densities and at four depths as duration of culture increased. A lower stocking density (500 g m−1line−1) showed a higher growth rate for the shortest durations, i.e. 30 days, as compared to those grown at a higher density. Likewise, decreasing growth rate was observed as depth increased, except at 50 cm after 60 days of culture. A 45-day culture period produced the highest molecular weight at both stocking densities (500 g m−1line−1 = 1,079.5 ± 31.8 kDa, 1,000 g m−1line−1 = 1,167 ± 270.6 kDa). ‘Sacol’ grown for 30 days at 50 cm (1,178 kDa) to 100 cm (1,200 kDa) depth showed the highest values of molecular weight of carrageenan extracted. The results suggested that K. striatum var. sacol is best grown at a stocking density of 500 g m−1line−1, at a depth of 50–100 cm, and for a duration of 30 days in order to provide the highest growth rate, carrageenan content and molecular weight.  相似文献   

19.
Research works that would determine the content of chemical elements in black population organisms on the basis of hair analysis are not numerous. There are no studies referring to black populations living in indigenous environment, like the Mafinga region, Iringa District in Tanzania examined by us. The aim of the study performed was to analyse the content of chemical elements Fe, Ca, Mg, Zn and Cu in easily available biological media like hair. The material was collected in October 2005 and March 2006 during anthropological examination, which came from young males (n = 91), students of a secondary school. Large Ca concentration range was found for the total number of subjects (680.20 to 2,089.70 μg/g d.m.). Mean Fe content in hair for the total number of subjects was 11.19 ± 3.70 μg/g d.m., while that of Mg 6.84 ± 2.02 μg/g d.m. Mean Zn concentration for the total number of subjects was 91.06 ± 39.22 μg/g d.m., being significantly higher in younger group than in older one (p = 0.039). Mean Cu concentration in hair for the total number of subjects was 7.50 ± 2.90 μg/g d.m Body mass index (BMI = kg/m2) was calculated for the subjects showing that out of 91 men participating in the study 15.4% was characterised by mediocre nutrition. No statistically significant correlations were found between BMI and the analysed chemical elements. The analysis of the content of trace elements in the hair of the examined young males showed deficiencies in Zn, Cu, Fe and significantly in Mg.  相似文献   

20.
This study reports on the optimization of protoplast yield from two important tropical agarophytes Gracilaria dura and Gracilaria verrucosa using different cell-wall-degrading enzymes obtained from commercial sources. The conditions for achieving the highest protoplast yield was investigated by optimizing key parameters such as enzyme combinations and their concentrations, duration of enzyme treatment, enzyme pH, mannitol concentration, and temperature. The significance of each key parameter was also further validated using the statistical central composite design. The enzyme composition with 4% cellulase Onozuka R-10, 2% macerozyme R-10, 0.5% pectolyase, and 100 U agarase, 0.4 M mannitol in seawater (30‰) adjusted to pH 7.5 produced the highest protoplast yields of 3.7 ± 0.7 × 106 cells g−1 fresh wt for G. dura and 1.2 ± 0.78 × 106 cells g−1 fresh wt for G. verrucosa when incubated at 25°C for 4–6 h duration. The young growing tips maximally released the protoplasts having a size of 7–15 μm in G. dura and 15–25 μm in G. verrucosa, mostly from epidermal and upper cortical regions. A few large-size protoplasts of 25–35 μm, presumably from cortical region, were also observed in G. verrucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号