首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

2.
Soybean [ Glycine max (L.) Merr. cv. Wells] plants grown in a greenhouse were inoculated with Rhizobium japonicum strain 61A118 and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. & Trappe. Plants were defoliated (26, 48 and 66%) throughout the growth period and evaluated for VAM colonization, N2, fixation and photosynthesis at harvest (six weeks). Photosynthate stress as a result of defoliation affected nodulation and nodule activity most severely. Colonization of the roots by the VAM fungus was little affected in comparison, and the intensity of colonization increased with increasing stress. The CO2-exchange rate decreased less with defoliation than did leaf mass, and photosynthetic efficiency increased with the severity of defoliation. The increase in photosynthetic efficiency was significantly correlated with increases in leaf P (r = 0.91) and N (r = 0.97) concentrations. The results suggest that the VAM fungus should not be regarded as a simple P source and C sink in the tripartite legume association. Threeway source/sink relationships (VAM-P, Rhizobium-N, and host leaf-C) are discussed.  相似文献   

3.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants were inoculated with a HUP− strain of Bradyrhizobium japonicum (Nitragin 61A118) and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol & Gerd.) Gerd. and Trappe or fertilized with KH2PO4 (nonVAM). They were grown for 50 days in a growth chamber and harvested over a 4-day drought period during which available soil water decreased to 0. Nodule P concentrations and P-use efficiency declined linearly with soil and root water content during the harvest period in both VAM and nonVAM plants. Nitrogenase activity, estimated from H2 evolution and C2H2 reduction data, was also a linear function of declining nodule P concentrations and CO2-exchange rates and showed simular patterns in both treatments. Hydrogen evolution and the relative efficiency of N2 fixation, on the other hand, reacted differently to increasing drought in VAM and nonVAM plants. Differences in the responses of nodule activity in VAM and nonVAM plants to drought are interpreted in terms of demand for nodule P and carbohydrates and of the effects of dehydration on O2 diffusion through nodule tissue.  相似文献   

4.
The objective of the work was to determine differences in plant response to geographic isolates of a vesicular-arbuscular mycorrhizal (VAM) fungus, and to demonstrate the need for such determinations in the selection of desirable host-endophyte combinations for practical applications. Soybean ( Glycine max (L.) Merr.) plants were inoculated with Bradyrhizobium japonicum and isolates of the VAM-fungal morphospecies Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, collected from an arid (AR), semiarid (SA) or mesic (ME) area. Inoculum potentials of the VAM-fungal isolates were determined and the inocula equalized, achieving the same level of root colonization (41%, P >0.05) at harvest (50 days). Plants of the three VAM treatments (AR, SA and ME) were evaluated against von VAM controls. Significant differences in plant response to colonization were found in dry mass, leaf K, N and P concentrations, and in root/shoot, nodule/root, root length/leaf area and root length/root mass ratios. The differences were most pronounced and consistent between the AR and all other treatments. Photosynthesis and nodule activity were higher ( P <0.05) in all VAM treatments, but only the AR plants had higher ( P <0.05) photosynthetic water-use efficiency than the controls. Nodule activity, evaluated by H2 evolution and C2H2 reduction, differed significantly between treatments. The results are discussed in terms of nutritional and non-nutritional effects of VAM colonization on the development and physiology of the tripartite soybean association in the light of intraspecific variability within the fungal endophyte.  相似文献   

5.
Soybean [ Glycine max (L.) Merr. cv. Kent] plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe in pot cultures using an inert medium and a nutrient solution. Phosphorus was provided initially as 0, 25,50, 100 or 200 mg hydroxyapatite [HAP, Ca10(PO4)6(OH)2] per pot. Under the low (0 mg HAP) and high (100 and 200 mg HAP) P regimes, VAM plants showed 20, 25 and 38% growth retardation, respectively, relative to non-colonized controls. At 50 mg HAP, VAM plant growth was significantly enhanced (14%). Dry weight and P content of both VAM and control plants increased with increased P availability throughout the HAP gradient. Intraradical VAM fungal biomass increased linearly with increasing P availability. Extraradical VAM fungal biomass was smaller than the intraradical component of the fungus at the lowest and highest levels of P addition in the growth medium. The ratio of extra- to intraradical mycelium, a suggested index of VAM fungal effectiveness, was greatest for the 50 mg HAP treatment, coinciding with growth enhancement of the host plant. This enhanced growth of the host at an intermediate P level was apparently a result of increased P uptake by the endophyte.  相似文献   

6.
Biological N2 fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars ( Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N2 fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N2 fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N2 fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.  相似文献   

7.
In 1985, 1986 and 1988, maize (Zea mays L.) was monocropped or intercropped with nodulating or nonnodulating soybean (Glycine max [L.] Merr.). In addition, nodulating soybean and nonnodulating soybean were each monocropped and grown as a mixture. In 1985 and 1986, treatments were grown at 0 and 60 kg N ha–1 and in 1988, the treatments were grown without N fertilizer, on N-depeted soil and on non-N-depleted soil. 15N enriched N was applied to soil in all the aforementioned treatments to test for N transfer from nodulating soybean to non-N2-fixing crops by the 15N dilution method.The 15N dilution method did not show the occurrence of N transfer in 1985 and 1986, but the N sparing effect was evident from the total N uptake of nonnodulating soybean, dwarf maize and tall maize, in 1986. In 1988, maize and nonnodulating soybean seed yields and seed N yields were higher on non-N-depleted soil than on N-depleted soil. On N-depleted soil, the 15N dilution method indicated N transfer from nodulating soybean to maize and to nonndulating soybean. At a population ratio of 67% nodulating soybean to 33% nonnodulating soybean, N transfer was also seen on non-N-depleted soil in 1988.  相似文献   

8.
Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature.  相似文献   

9.
To investigate nitrogen assimilation and translocation in Zea mays L. colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thax. sensu Gerd.), we measured key enzyme activities, 15N incorporation into free amino acids, and 15N translocation from roots to shoots. Glutamine synthetase and nitrate reductase activities were increased in both roots and shoots compared with control plants, and glutamate dehydrogenase activity increased in roots only. In the presence of [15N]ammonium, glutamine amide was the most heavily labeled product. More label was incorporated into amino acids in VAM plants. The kinetics of 15N labeling and effects of methionine sulfoximine on distribution of 15N-labeled products were entirely consistent with the operation of the glutamate synthase cycle. No evidence was found for ammonium assimilation via glutamate dehydrogenase. 15N translocation from roots to shoots through the xylem was higher in VAM plants compared with control plants. These results establish that, in maize, VAM fungi increase ammonium assimilation, glutamine production, and xylem nitrogen translocation. Unlike some ectomycorrhizal fungi, VAM fungi do not appear to alter the pathway of ammonium assimilation in roots of their hosts.  相似文献   

10.
Soybean [ Glycine max (L.) Merr. cv. Amsoy 71] plants were inoculated with either the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum , with a strain of Bradyrhizobium japonicum . or with both endophytes together. Non-inoculated plants were fertilized with levels of N and P that resulted in plant growth similar to that following infection by Bradyrhizobium or Glomus , respectively. In general, plants colonized by Glomus contained more pinitol (1 d -3-O-methyl- chiro -inositol) but less starch than corresponding P-fertilized soybeans, while nodulated soybeans contained more pinitol and sucrose in the roots than corresponding N-fertilized plants. Compared to nutrient-amended soybeans, increases or decreases in free amino acids in symbiotically grown plants tended to follow transient changes in N content and endophyte activity. The exception to this was the elevated levels of methionine in nodulated roots or aspartate and arginine in Glomus -inoculated roots regardless of N level. There were both quantitative and qualitative changes in the proteins found in inoculated soybeans, especially in infected roots where nodulins (nodule-specific proteins) and endomycorrhizins (mycorrhiza-specific proteins) were detected by polyacrylamide gel eletrophoresis. Five nodulins (11.8% of root proteins) were detected with molecular weights of 14, 34, 40, 41 and 100 kDa. Five endomycorrhizins (5.1% of root proteins) were detected with molecular weights of 16, 17, 18, 22 and 30 kDa. Differences in nutrient uptake and allocation in symbiotic plants could not be duplicated by fertilizer input alone, although nutrient addition could lead to similar growth rates and dry weight accumulation. These findings suggest that the quality and quantity of plant carbohydrates, proteins and amino acids shift in response to the physiological changes resulting from infection by N2-fixing bacteria or endomycorrhizal fungi.  相似文献   

11.
Using a split-root technique, roots of soybean plants were divided between two pots. In one of the two pots, two maize plants were grown and half of those pots were inoculated with the vesicular arbuscular mycorrhizal (VAM) fungus, Glomus fasciculatus. Fifty-two days after planting, 15N-labeled ammonium sulfate was applied to the pots which contained only soybean roots. Forty-eight hours after application, significantly higher values for atom per cent 15N excess were found in roots and leaves of VAM-infected maize plants as compared with the non-VAM-infected maize plants. Results indicated that VAM fungi did enhance N transfer from one plant to another.  相似文献   

12.
The contribution of hyphae of Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) to the acquisition of mineral nitrogen by Triticum aestivum L. cv. Hano (wheat) was tested under conditions of low P and high N (+N−P) or low N (−N−P). Mycorrhizal colonisation increased the shoot dry weight and plant tissue concentrations of P and cations. However, N tissue concentrations of mycorrhizal plants were not increased, although nitrate reductase activities were significantly higher (in vivo activity) in +N−P mycorrhizal compared to non-mycorrhizal roots. Severe plant N deficiency reduced the percentage root length colonised (but not the percentage viable colonisation), hyphal length, total 15 N uptake by hyphae and dry weight of mycorrhizal plants. Although mycorrhizal colonisation did not affect the overall plant N status, hyphae transported 1% (−N−P) and 7% (+N−P) of the 15 N-labelled NH4NO3 to mycorrhizal plants over 48 h. The higher rate of hyphal N uptake was apparently related to the more extensive hyphal growth at the higher level of plant N supply. However, the hyphal N supply was not sufficiently high to sustain adequate N nutrition of the plants supplied with very low amounts of N to the roots. Conversely, a sufficient N supply to the roots was important for the development of an extensive mycelium.  相似文献   

13.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   

14.
Soybean (Glycine max [L.] Merr.) plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (VAM plants) or fertilized with KH2PO4 (nonVAM plants) and grown for 50 days under controlled conditions. Plants were harvested over a 4-day period during which the soil was permitted to dry slowly. The harvest was terminated when leaf gas exchange was no longer measurable due to drought stress. Significantly different effects in shoot water content, but not in shoot water potential, were found in VAM and nonVAM plants in response to drought stress. Leaf conductances of the two treatments showed similar response patterns to changes in soil water and shoot water potential but were significantly different in magnitude and trend relative to shoot water content. The relationships between transpiration, CO2 exchange and water-use efficiency (WUE) were the same in VAM and nonVAM plants in response to decreasing soil water and shoot water potential. As a function of shoot water content, however, WUE showed different response patterns in VAM and nonVAM plants.  相似文献   

15.
Arbuscular mycorrhizal fungi can enhance nutrient acquisition by a plant via their extraradical hyphae. This is particularly true for phosphorus, but the case for nitrogen (N) has been less clear. In our growth systems there was a small air-gap between root and hyphal compartments, which eliminated diffusion of nutrients between compartments. Moreover, our methods allowed us to distinguish between nitrate and ammonium. We found that N transfer to Zea maize L. depends on the sources fed to the hyphae of Glomus aggregatum Schenck & Smith. In experiment 1, despite the fact that plant demand for N was already met, plants received 10 times as much 15N from ammonium than from nitrate. In experiment 2, 74% of shoot-N was derived from the slow-release urea added to the hyphal compartment while only 2.9% was derived from the nitrate-N. Intraradical hyphae isolated from roots contained a considerable amount of 15N in the cell wall even when 15N-nitrate was the source. We conclude that the mycorrhizal fungus can rapidly deliver ammonium-N to the plants, and that while the fungus can absorb nitrate, it apparently lacks the capacity to transfer it to the plant.  相似文献   

16.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

17.
Abstract Soybean (Glycine max (L.) Men) plants were grown under controlled conditions in an experiment designed as a 4 × 4 factorial. The factors were N or P nutrition, with different strains of Rhizobium japonicum or N-fertilization as levels of the first factor and different species of vesicular-arbuscular mycorrhizal (VAM) fungi or P fertilization as levels of the other. Organisms used were R. japonicum strains USDA 110, USDA 136, and 61A118, and the VAM fungi Glomus versiforme (Karst.) Berch, Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe, and Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. There were 16 treatments: nine Rhizobium + Glomus combinations, three Rhizobium + V and three Glomus+ N combinations, and one non-symbiotic set of plants supplied with N + P. The tripartite symbioses were evaluated by analysis of variance against the Rhizobium + P and Glomus + N comparison treatments for effects on root and leaf dry mass, root N and P content, nodule mass and activity, and VAM colinization. Significant to highly significant main effects and interactions were found in virtually all evaluations due to both Rhizobium strain and VAM–fungal species. We conclude that different endophyte isolates affect not only the host plant, but also the development and function of their co-endophytes. These findings establish the existence of inter-endophyte compatibility, an important consideration when selecting or engineering for desirable endophyte traits.  相似文献   

18.
Non-nodulated soybean (Glycine max (L.) Merr.) plants were cultivated hydroponically under N-sufficient (5 mM NaNO(3)) or N-deficient (0.5 mM NaNO(3)) conditions. (13)N- or (15)N- labelled nitrate was fed to the cut end of the stems, and the accumulation of nitrate-derived N in the pods, nodes and stems was compared. Real-time images of (13)N distribution in stems, petioles and pods were obtained using a Positron Emitting Tracer Imaging System for a period of 40 min. The results indicated that the radioactivity in the pods of N-deficient plants was about 10 times higher than that of N-sufficient plants, although radioactivity in the stems and nodes of N-deficient versus N-sufficient plants was not different. A similar result was obtained by supplying (15)NO(3) to cut soybean shoots for 1 h. The fact that the N translocation into the pods from NO(3) fed to the stem base was much faster in N-deficient plants may be due to the strong sink activity of the pods in N-deficient plants. Alternatively, the redistribution of N from the leaves to the pods via the phloem may be accelerated in N-deficient plants. The temporal accumulation of (13)NO(3) in nodes was suggested in both N-sufficient and N-deficient plants. In one (13)NO(3) pulse-chase experiment, radioactivity in the stem declined rapidly after transferring the shoot from the (13)NO(3) solution to non-labelled NO(3); in contrast, the radioactivity in the node declined minimally during the same time period.  相似文献   

19.
Light effects in mycorrhizal soybeans   总被引:5,自引:1,他引:4       下载免费PDF全文
Soybean (Glycine max. L. Merr.) plants were grown in an experiment with a 3 × 3 factorial design using different levels of light (170, 350, and 700 μE·m−2·s−1) and P as factors. Plants were grown in a greenhouse in pot cultures using a soil low in plant-available P under three P regimes: no additional P, P added as KH2PO4, or P uptake enhanced by colonization of the host plant with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe. Development of the VAM fungal endophyte and of plants under all three P regimes was depressed by limiting light. However, the growth response of VAM plants to increasing light relative to non-VAM plants in the absence of additional P increased while the response relative to non-VAM plants with additional P decreased slightly. The highly significant interaction between the factors (P < 0.001) of the experiment was due to differences in the magnitude and direction of simple effects of the factors. The implications of these differences in terms of source-sink relationships of the symbionts and the value of different non-VAM controls in interpreting VAM effects are discussed.  相似文献   

20.
A method based on simultaneous short-term exposure to 14CO2 and 15N2 is described for studying nitrogen fixation and distribution in legumes relative to carbon assimilation and use. Equipment designed to accomodate experiments under natural conditions with very little disturbance of the N2 fixing association is used. It permits continuous measurement and regulation of variables such as air temperature, humidity and CO2 concentration as well as soil aeration. Measurements of distribution and use of assimilates, respiration of nodulated roots, quantitative N2 fixation and the distribution and fate of fixed N as a function of time lead to a precise estimation of C and N budgets for each labelling period. When experiments are done at several phenological stages they give a new insight into the complex C and N interrelations in legume symbiosis.
A series of trials throughout the growth period of Glycine max (L.) Merr. cv. Hodgson demonstrated the sensitivity of the method. The development of the plants from vegetative to reproductive stages was accompanied by a complete change in the distribution patterns of current assimilates and products of nitrogen fixation. Maximum sink strength moved from the leaves to the pods and seeds which ended up receiving 70% of the incoming C and 35% of the fixed N. The fact that up to 85% of fixed N in the plants was in the reproductive organs at maturity can be accounted for by remobilisation from vegetative parts.
The respiration of nodulated roots utilized 33% of carbon translocated to below-ground plant parts before nitrogen fixation started, but as much as 50% during the period of optimal fixation. The advantages and limitations of the isotopic method described are critically discussed as a prelude to future investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号