首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
alpha-Crystallin, a heteromultimeric protein made up of alphaA- and alphaB-crystallins, functions as a molecular chaperone in preventing the aggregation of proteins. We have shown earlier that structural perturbation of alpha-crystallin can enhance its chaperone-like activity severalfold. The two subunits of alpha-crystallin have extensive sequence homology and individually display chaperone-like activity. We have investigated the chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates against thermal and nonthermal modes of aggregation. We find that, against a nonthermal mode of aggregation, alphaB-crystallin shows significant protective ability even at subphysiological temperatures, at which alphaA-crystallin or heteromultimeric alpha-crystallin exhibit very little chaperone-like activity. Interestingly, differences in the protective ability of these homoaggregates against the thermal aggregation of beta(L)-crystallin is negligible. To investigate this differential behavior, we have monitored the temperature-dependent structural changes in both the proteins using fluorescence and circular dichroism spectroscopy. Intrinsic tryptophan fluorescence quench-ing by acrylamide shows that the tryptophans in alphaB-crystallin are more accessible than the lone tryptophan in alphaA-crystallin even at 25 degrees C. Protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates the higher solvent accessibility of hydrophobic surfaces on alphaB-crystallin. Circular dichroism studies show some tertiary structural changes in alphaA-crystallin above 50 degrees C. alphaB-crystallin, on the other hand, shows significant alteration of tertiary structure by 45 degrees C. Our study demonstrates that despite a high degree of sequence homology and their generally accepted structural similarity, alphaB-crystallin is much more sensitive to temperature-dependent structural perturbation than alphaA- or alpha-crystallin and shows differences in its chaperone-like properties. These differences appear to be relevant to temperature-dependent enhancement of chaperone-like activity of alpha-crystallin and indicate different roles for the two proteins both in alpha-crystallin heteroaggregate and as separate proteins under stress conditions.  相似文献   

2.
alphaA- and alphaB-crystallins are molecular chaperones expressed at low levels in lens epithelial cells, and their expression increases dramatically during differentiation to lens fibers. However, the functions of alphaA- and alphaB-crystallins in lens epithelial cells have not been studied in detail. In this study, the relative ability of alphaA- and alphaB-crystallin, in protecting lens epithelial cells from apoptotic cell death was determined. The introduction of alphaA-crystallin in the transformed human lens epithelial (HLE) B-3 lens epithelial cell line (which expresses low endogenous levels of alphaB-crystallin) led to a nearly complete protection of cell death induced by staurosporine, Fas monoclonal antibody, or the cytokine tumor necrosis factor alpha. To further study the relative protective activities of alphaA- and alphaB-crystallins, we created a cell line derived from alphaA-/-alphaB-/- double knockout mouse lens epithelia by infecting primary cells with Ad12-SV40 hybrid virus. The transformed cell line alphaAalphaBKO1 derived from alphaA/alphaB double knockout cells was transfected with alphaA- or alphaB-crystallin cDNA contained in pCIneo mammalian expression vector. Cells expressing different amounts of either alphaA-crystallin or alphaB-crystallin were isolated. The ability of alphaA- or alphaB-crystallin to confer protection from apoptotic cell death was determined by annexin labeling and flow cytometry of staurosporine- or UVA- treated cells. The results indicate that the anti-apoptotic activity of alphaA-crystallin was two to three-fold higher than that of alphaB-crystallin. Our work suggests that comparing the in vitro annexin labeling of lens epithelial cells is an effective way to measure the protective activity of alphaA- and alphaB-crystallin. Since the expression of alphaA-crystallin is largely restricted to the lens, its greater protective effect against apoptosis suggests that it may play a significant role in protecting lens epithelial cells from stress.  相似文献   

3.
The chaperone activity and biophysical properties of recombinant human alphaA- and alphaB-crystallins were studied by light scattering and spectroscopic methods. While the chaperone function of alphaA-crystallin markedly improves with an increase in temperature, the activity of alphaB homopolymer appears to change very little upon heating. Compared with alphaB-crystallin, the alphaA-homopolymer is markedly less active at low temperatures, but becomes a more active species at high temperatures. At physiologically relevant temperatures, the alphaB homopolymer appears to be modestly (two times or less) more potent chaperone than alphaA homopolymer. In contrast to very similar thermotropic changes in the secondary structure of both homopolymers, alphaA- and alphaB-crystallins markedly differ with respect to the temperature-dependent surface hydrophobicity profiles. Upon heating, alphaA-crystallin undergoes a conformational transition resulting in the exposure of additional hydrophobic sites, whereas no such transition occurs for alphaB-crystallin. The correlation between temperature-dependent changes in the chaperone activity and hydrophobicity properties of the individual homopolymers supports the view that the chaperone activity of alpha-crystallin is dependent on the presence of surface-exposed hydrophobic patches. However, the present data also show that the surface hydrophobicity is not the sole determinant of the chaperone function of alpha-crystallin.  相似文献   

4.
alpha-Crystallin, a predominant protein of the ocular lens, is composed of two subunits, alphaA and alphaB. Of these, alphaB-crystallin has been shown to present widely in non-lenticular tissues while alphaA-crystallin is largely lens-specific. Although, expression of alphaB-crystallin is elevated under various stress and pathological conditions, yet its physiological significance remained unknown. Some studies suggest that the expression of alphaB-crystallin gene is related to oxidative stress. Persistent hyperglycemia during uncontrolled diabetes is known to cause oxidative stress, which has been implicated in various secondary complications of diabetes. Hence, expression of alphaA- and alphaB-crystallins in various tissues of streptozotocin (STZ)-induced diabetic Wistar-NIN rats was investigated by RT-PCR and immunoblotting. While expression of alphaB-crystallin was noted in the wide range of tissues examined in the study, alphaA-crystallin expression was detected only in lens and retina. Interestingly, alphaB-crystallin expression was elevated in lens, heart, muscle, and brain, but decreased in adipose tissue of diabetic rats compared to control rats. alphaA-Crystallin expression was increased in retina of diabetic rat. Increased oxidative stress appears to be a major stimulus for the enhanced expression of alphaA- and alphaB-crystallins in the tissues of diabetic rats and elevated expression of alpha-crystallin may have a protective role against metabolic stress. Interestingly, feeding of curcumin, a dietary antioxidant, to diabetic rats attenuated the enhanced expression of alphaB-crystallin. The results indicate that elevated expression of alpha-crystallins in some tissues may have implications in pathophysiology of diabetic complications.  相似文献   

5.
Lens alpha-crystallin is a 600-800-kDa heterogeneous oligomer protein consisting of two subunits, alphaA and alphaB. The homogeneous oligomers (alphaA- and alphaB-crystallins) have been prepared by recombinant DNA technology and shown to differ in the following biophysical/biochemical properties: hydrophobicity, chaperone-like activity, subunit exchange rate, and thermal stability. In this study, we studied their thermodynamic stability by unfolding in guanidine hydrochloride. The unfolding was probed by three spectroscopic parameters: absorbance at 235 nm, Trp fluorescence intensity at 320 nm, and far-UV circular dichroism at 223 nm. Global analysis indicated that a three-state model better describes the unfolding behavior than a two-state model, an indication that there are stable intermediates for both alphaA- and alphaB-crystallins. In terms of standard free energy (DeltaG(NU)(H(2)(O))), alphaA-crystallin is slightly more stable than alphaB-crystallin. The significance of the intermediates may be related to the functioning of alpha-crystallins as chaperone-like molecules.  相似文献   

6.
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.  相似文献   

7.
alpha-Crystallin, a major protein of all vertebrate lenses, consists of two subunits, alphaA and alphaB, which form polymeric aggregates with an average molecular mass of about 800kDa. In this study, we have employed various biophysical methods to study aggregate sizes and conformational properties of purified alphaA, alphaB subunits, and cloned recombinant alphaB subunit. From far- and near-UV CD spectra, native alpha-, alphaA-, alphaB-, and recombinant alphaB-crystallins from porcine lenses all show similar beta-sheet conformation to that from bovine and human lenses as reported previously. By means of gel-filtration chromatography and dynamic light scattering, we have found that the molecular sizes of all four crystallin aggregates are polydispersedly distributed in the following order of aggregate sizes, i.e., native alpha>alphaA>alphaB approximately recombinant alphaB. To investigate the structural and functional relationships, we have also compared the chaperone activities of all four alpha-crystallin aggregates at different temperatures. From the results of chaperone-activity assays, ANS (8-anilinonaphthalene-1-sulfonic acid) binding and thermal stability studies, there appeared to be at least two factors playing major roles in the chaperone-like activity of these lens proteins: one is the hydrophobicity of the exposed protein surface and the other is the structural stability associated with each protein. We showed that alphaA-crystallin is a better chaperone to protect gamma-crystallin against UV irradiation than alphaB-crystallin, in contrast to the observation that alphaB is generally a better chaperoning protein than alphaA for enzyme protective assays at physiological temperatures.  相似文献   

8.
The major lens protein alpha-crystallin is composed of two related types of subunits, alphaA- and alphaB-crystallin, of which the former is essentially lens-restricted, while the latter also occurs in various other tissues. With regard to their respective chaperone capacities, it has been reported that homomultimeric alphaA-crystallin complexes perform better in preventing thermal aggregation of proteins, while alphaB-crystallin complexes protect more efficiently against reduction-induced aggregation of proteins. Here, we demonstrate that this seeming discrepancy is solved when the reduction assay is performed at increasing temperatures: above 50 degrees C alphaA- performs better than alphaB-crystallin also in this assay. This inversion in protective capacity might relate to the greater resistance of alphaA-crystallin to heat denaturation. Infrared spectroscopy, however, revealed that this is not due to a higher thermostability of alphaA-crystallin's secondary structure. Also the accessible hydrophobic surfaces do not account for the chaperoning differences of alphaA- and alphaB-crystallin, since regardless of the experimental temperature alphaB-crystallin displays a higher hydrophobicity. It is argued that the greater complex stability of alphaA-crystallin, as evident upon urea denaturation, and the higher chaperone capacity of alphaB-crystallin at physiological temperatures reflect the evolutionary compromise to obtain an optimal functioning of heteromeric alpha-crystallin as a lens protein.  相似文献   

9.
Lens alphaA- and alphaB-crystallin have been reported to act differently in their protection against nonthermal destabilization of proteins. The nature of this difference, however, is not completely understood. Therefore we used a combination of thermally and solvent-induced structural changes to investigate the difference in the secondary, tertiary and quaternary structures of alphaA- and alphaB-crystallin. We demonstrate the relationship between the changes in the tertiary and quaternary structures for both polypeptides. Far-ultraviolet circular dichroism revealed that the secondary structure of alphaB-crystallin is more stable than that of alphaA-crystallin, and the temperature-induced secondary structure changes of both polypeptides are partially reversible. Tryptophan fluorescence revealed two distinct transitions for both alphaA- and alphaB-crystallin. Compared to alphaB-crystallin, both transitions of alphaA-crystallin occurred at higher temperature. The changes in the hydrophobicity are accompanied by changes in the quaternary structure and are biphasic, as shown by bis-1-anilino-8-naphthalenesulfonate fluorescence and sedimentation velocity. These phenomena explain the difference in the chaperone capacity of alphaA- and alphaB-crystallin carried out at different temperatures. The quaternary structure of alpha-crystallin is more stable than that of alphaA- and alphaB-crystallin. The latter has a strong tendency to dissociate under thermal or solvent destabilization. This phenomenon is related to the difference in subunit organization of alphaA- and alphaB-crystallin where both hydrophobic and ionic interactions are involved. We find that an important subunit rearrangement of alphaA-crystallin takes place once the molecule is destabilized. This subunit rearrangement is a requisite phenomenon for maintaining alpha-crystallin in its globular form and as a stable complex. On the base of our results, we suggest a four-state model describing the folding and dissociation of alphaA- and alphaB-crystallin better than a three-state model [Sun et al. (1999) J. Biol. Chem. 274, 34067-34071].  相似文献   

10.
alpha-crystallin (alphaA and alphaB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of alphaA and alphaB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of alphaB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While alphaB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of alphaB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. alphaA-crystallin, which has 60% sequence identity to alphaB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of alphaB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of alphaB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated alphaB-crystallin in SB202190-treated migrating lens epithelial cells. alphaB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, alphaB-crystallin exhibited a clear co-localization with the actin meshwork, beta-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE-1 protein complex and Arp3, a protein of the actin nucleation complex, suggesting potential interactions between alphaB-crystallin and regulatory proteins involved in actin dynamics and cell adhesion. This is the first report demonstrating specific localization of alphaA and alphaB-crystallins to the lamellipodia in migrating lens epithelial cells and our findings indicate a potential role for alpha-crystallin in actin dynamics during cell migration.  相似文献   

11.
AlphaA- and alphaB-crystallins are distinct antiapoptotic regulators. Regarding the antiapoptotic mechanisms, we have recently demonstrated that alphaB-crystallin interacts with the procaspase-3 and partially processed procaspase-3 to repress caspase-3 activation. Here, we demonstrate that human alphaA- and alphaB-crystallins prevent staurosporine-induced apoptosis through interactions with members of the Bcl-2 family. Using GST pulldown assays and coimmunoprecipitations, we demonstrated that alpha-crystallins bind to Bax and Bcl-X(S) both in vitro and in vivo. Human alphaA- and alphaB-crystallins display similar affinity to both proapoptotic regulators, and so are true with their antiapoptotic ability tested in human lens epithelial cells, human retina pigment epithelial cells (ARPE-19) and rat embryonic myocardium cells (H9c2) under treatment of staurosporine, etoposide or sorbitol. Two prominent mutants, R116C in alphaA-crystallin and R120G, in alphaB-crystallin display much weaker affinity to Bax and Bcl-X(S). Through the interaction, alpha-crystallins prevent the translocation of Bax and Bcl-X(S) from cytosol into mitochondria during staurosporine-induced apoptosis. As a result, alpha-crystallins preserve the integrity of mitochondria, restrict release of cytochrome c, repress activation of caspase-3 and block degradation of PARP. Thus, our results demonstrate a novel antiapoptotic mechanism for alpha-crystallins.  相似文献   

12.
alpha-Crystallin, a major eye lens protein, has been shown to function like a molecular chaperone by suppressing the aggregation of other proteins induced by various stress conditions. Ultraviolet (UV) radiation is known to cause structural and functional alterations in the lens macromolecules. Earlier we observed that exposure of rat lens to in vitro UV radiation led to inactivation of many lens enzymes including glucose-6-phosphate dehydrogenase (G6PD). In the present paper, we show that alpha-crystallin (alphaA and alphaB) protects G6PD from UVB irradiation induced inactivation. While, at 25 degrees C, there was a time-dependent decrease in G6PD activity upon irradiation at 300 nm, at 40 degrees C there was a complete loss of activity within 30 min even without irradiation. The loss of activity of G6PD was prevented significantly, if alphaA- or alphaB-crystallin was present during irradiation. At 25 degrees C, alphaB-crystallin was slightly a better chaperone in protecting G6PD against UVB inactivation. Interestingly, at 40 degrees C, alphaA- and alphaB-crystallins not only prevent the loss of G6PD activity but also protect against UVB inactivation. However, alphaA- and alphaB-crystallins were equally efficient at 40 degrees C in protecting G6PD.  相似文献   

13.
Alpha-crystallin, a large lenticular protein complex made up of two related subunits (alphaA- and alphaB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human alphaA- and alphaB-crystallins conjugated to a small fluorescent tag (Alexa350). Both alphaA and alphaB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of alpha-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that alpha-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3. 45 +/- 0.11 ng/microg of membrane and 4.57 +/- 0.50 x 10(-4) microg(-1) of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed alpha-crystallin complex may hold particular relevance for the function of alpha-crystallin within the lens.  相似文献   

14.
Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.  相似文献   

15.
We investigated regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) by dephosphorylation. Treatment of primary cultures of cardiomyocytes with the phosphatase inhibitor okadaic acid increased the rate of recovery from an acid load, suggesting that the okadaic acid sensitive PP1 may be involved in NHE1 regulation in vivo. We examined the ability of purified protein phosphatases PP1, PP2A, and PP2B to dephosphorylate the regulatory cytoplasmic tail. NHE1 was completely dephosphorylated by PP1, poorly dephosphorylated by PP2A, and not dephosphorylated by PP2B. Examination of NHE1 binding to PP1 or PP2B revealed that an association occurs between NHE1 and PP1 both in vitro and in vivo, but NHE1 did not associate with full-length PP2B. We expressed PP1 or inhibitor 2, a specific PP1 inhibitor, in cell lines to examine the effect of PP1 on NHE1 activity in vivo. Overexpression of PP1 causes a decrease in NHE1 activity but does not affect stimulation by thrombin. Cell lines expressing the specific PP1 inhibitor, inhibitor 2, had elevated proton efflux rates and could not be further stimulated by the Na(+)/H(+) exchanger agonist thrombin. The results suggest that PP1 is an important regulatory phosphatase of NHE1, that it can bind to and dephosphorylate the protein, and that it regulates NHE1 activity in vivo.  相似文献   

16.
To determine the effects of deamidation on structural and functional properties of alphaA-crystallin, three mutants (N101D, N123D, and N101D/N123D) were generated. Deamidated alphaB-crystallin mutants (N78D, N146D, and N78D/N146D), characterized in a previous study (Gupta, R., and Srivastava, O. P. (2004) Invest. Ophthalmol. Vis. Sci. 45, 206-214) were also used. The biophysical and chaperone properties were determined in (a) homoaggregates of alphaA mutants (N101D, N123D, and N101D/N123D) and (b) reconstituted heteroaggregates of alpha-crystallin containing (i) wild type alphaA (WT-alphaA): WT-alphaB crystallins, (ii) individual alphaA-deamidated mutants:WT-alphaB crystallins, and (iii) WT-alphaA:individual alphaB-deamidated mutant crystallins. Compared with the WT-alphaA, the three alphaA-deamidated mutants showed reduced levels of chaperone activity, alterations in secondary and tertiary structures, and larger aggregates. These altered properties were relatively more pronounced in the mutant N101D compared with the mutant N123D. Further, compared with heteroaggregates of WT-alphaA and WT-alphaB, the heteroaggregates containing deamidated subunits of either alphaA- or alphaB-crystallins and their counterpart WT proteins showed higher molecular mass, altered tertiary structures, lower exposed hydrophobic surfaces, and reduced chaperone activity. However, the heteroaggregate containing WT-alphaA and deamidated alphaB subunit showed lower chaperone activity, smaller oligomers, and 3-fold lower subunit exchange rate than heteroaggregate containing deamidated alphaA- and WT-alphaB subunits. Together, the results suggested that (a) both Asn residues (Asn-101 and Asn-123) are required for the structural integrity and chaperone function of alphaA-crystallin and (b) the presence of WT-alphaB in the alpha-crystallin heteroaggregate leads to packing-induced structural changes which influences the oligomerization and modulate chaperone activity.  相似文献   

17.
Mutations in the alpha-crystallin domain of 4 of the small heat shock proteins (sHsp) (Hsp27/HspB1, alphaA-crystallin/ HspB4, alphaB-crystallin/HspB5, and HspB8) are responsible for dominant inherited diseases in humans. One such mutation at a highly conserved arginine residue was shown to cause major conformational defects and intracellular aggregation of alphaA- and alphaB-crystallins and HspB8. Here, we studied the effect of this Arg mutation on the structure and function of Hsp27. Chinese hamster Hsp27 with Arg148 replaced by Gly (Hsp27R148G) formed dimers in vitro and in vivo, which contrasted with the 12- or 24-subunit oligomers formed by the wild-type protein (Hsp27WT). Despite these alterations, Hsp27R148G had a chaperone activity almost as high as Hsp27WT. The dimers of Hsp27R148G did not further deoligomerize on phosphorylation and like the dimers formed by phosphorylated Hsp27WT were not affected by the deletion of the N-terminal WD/EPF (single letter amino acid code) motif, suggesting that mutation of Arg148, deletion of the N-terminal WD/EPF motif, and phosphorylation of Ser90 may produce similar structural perturbations. Nevertheless, the structure of Hsp27R148G appeared unstable, and the mutated protein accumulated as aggregates in many cells. Both a lower basal level of phosphorylation of Hsp27R148G and the coexpression of Hsp27WT could reduce the frequency of formation of these aggregates, suggesting possible mechanisms regulating the onset of the sHsp-mediated inherited diseases.  相似文献   

18.
The alpha-, beta-, and gamma-crystallins are the major structural proteins of mammalian lenses. The human lens also contains tryptophan-derived UV filters, which are known to spontaneously deaminate at physiological pH and covalently attach to lens proteins. 3-Hydroxykynurenine (3OHKyn) is the third most abundant of the kynurenine UV filters in the lens, and previous studies have shown this compound to be unstable and to be oxidized under physiological conditions, producing H2O2. In this study, we show that methionine and tryptophan amino acid residues are oxidized when bovine alpha-crystallin is incubated with 3-hydroxykynurenine. We observed almost complete oxidation of methionines 1 and 138 in alphaA-crystallin and a similar extent of oxidation of methionines 1 and 68 in alphaB-crystallin after 48 h. Tryptophans 9 and 60 in alphaB-crystallin were oxidized to a lesser extent. AlphaA-crystallin was also found to have 3OHKyn bound to its single cysteine residue. Examination of normal aged human lenses revealed no evidence of oxidation of alpha-crystallin; however, oxidation was detected at methionine 1 in both alphaA- and alphaB-crystallin from human cataractous lenses. Age-related nuclear cataract is associated with coloration and insolubilization of lens proteins and extensive oxidation of cysteine and methionine residues. Our findings demonstrate that 3-hydroxykynurenine can readily catalyze the oxidation of methionine residues in both alphaB- and alphaA-crystallin, and it has been reported that alpha-crystallin modified in this way is a poorer chaperone. Thus, 3-hydroxykynurenine promotes the oxidation and modification of crystallins and may contribute to oxidative stress in the human lens.  相似文献   

19.
The heteroaggregate alpha-crystallin and homoaggregates of its subunits, alphaA- and alphaB-crystallins, function like molecular chaperones and prevent the aggregation of several proteins. Although modulation of the chaperone-like activity of alpha-crystallin by both temperature and chaotropic agents has been demonstrated in vitro, the mechanism(s) of its regulation in vivo have not been elucidated. The subunits of alpha-crystallin exchange freely, resulting in its dynamic and variable quaternary structure. Mixed aggregates of the alpha-crystallins and other mammalian small heat shock proteins (sHSPs) have also been observed in vivo. We have investigated the time-dependent structural and functional changes during the course of heteroaggregate formation by the exchange of subunits between homoaggregates of alphaA- and alphaB-crystallins. Native isoelectric focusing was used to follow the time course of subunit exchange. Circular dichroism revealed large tertiary structural alterations in the subunits upon subunit exchange and packing into heteroaggregates, indicating specific homologous and heterologous interactions between the subunits. Subunit exchange also resulted in quaternary structural changes as demonstrated by gel filtration chromatography. Interestingly, we found time-dependent changes in chaperone-like activity against the dithiothreitol-induced aggregation of insulin, which correlated with subunit exchange and the resulting tertiary and quaternary structural changes. Heteroaggregates of varying subunit composition, as observed during eye lens epithelial cell differentiation, generated by subunit exchange displayed differential chaperone-like activity. It was possible to alter chaperone-like activity of preexisting oligomeric sHSPs by alteration of subunit composition by subunit exchange. Our results demonstrate that subunit exchange and the resulting structural and functional changes observed could constitute a mechanism of regulation of chaperone-like activity of alpha-crystallin (and possibly other mammalian sHSPs) in vivo.  相似文献   

20.
We isolated and characterized several phosphoseryl/phosphothreonyl phosphatase activities (P1–P11) from frontal lobe of six autopsied human brains. Of these, PP1 (P3) was a major tau phosphatase. The enzyme required metal ions and was maximally activated by Mn2+. Western blots with antibodies to known protein phosphatases showed PP1 and PP2B immunoreactivity. However, the removal of PP2B by immunoabsorption or its inhibition with EGTA did not result in appreciable loss of P3 activity. These observations suggest that P3 was an enriched PP1. Dephosphorylation of Alzheimer disease hyperphosphorylated tau (AD P-tau) by PP1 was site-specific. PP1 preferentially dephosphorylated pT212 (40%), pT217 (26%), pS262 (33%), pS396 (42%) and pS422 (31%) of AD P-tau. Dephosphorylation of tau at pT181, pS199, pS202, pT205, pS214, and pS404, was undetectable. Of the sites dephosphorylated, pT212 was only a substrate for PP1, as purified/enriched PP2A and PP2B from the same brains did not dephosphorylate this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号