首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by chronic pulmonary and systematic inflammation. An abnormal adaptive immune response leads to an imbalance between pro- and anti-inflammatory processes. T-helper (Th), T-cytotoxic (Tc) and T-regulatory (Treg) cells may play important roles in immune and inflammatory responses. This study was conducted to clarify the changes and imbalance of cytokines and T lymphocyte subsets in patients with COPD, especially during acute exacerbations (AECOPD).

Methods

Twenty-three patients with stable COPD (SCOPD) and 21 patients with AECOPD were enrolled in the present study. In addition, 20 age-, sex- and weight-matched non-smoking healthy volunteers were included as controls. The serum levels of selected cytokines (TGF-β, IL-10, TNF-α, IL-17 and IL-9) were measured by enzyme-linked immunosorbent assay (ELISA) kits. Furthermore, the T lymphocyte subsets collected from peripheral blood samples were evaluated by flow cytometry after staining with anti-CD3-APC, anti-CD4-PerCP, anti-CD8- PerCP, anti-CD25-FITC and anti-FoxP3-PE monoclonal antibodies. Importantly, to remove the confounding effects of inflammatory factors, the authors introduced a concept of “inflammation adjustment” and corrected each measured value using representative inflammatory markers, such as TNF-α and IL-17.

Results

Unlike the other cytokines, serum TGF-β levels were considerably higher in patients with AECOPD relative to the control group regardless of adjustment. There were no significant differences in the percentages of either CD4+ or CD8+ T cells among the three groups. Although Tregs were relatively upregulated during acute exacerbations, their capacities of generation and differentiation were far from sufficient. Finally, the authors noted that the ratios of Treg/IL-17 were similar among groups.

Conclusions

These observations suggest that in patients with COPD, especially during acute exacerbations, both pro-inflammatory and anti-inflammatory reactions are strengthened, with the pro-inflammatory reactions dominating. Although the Treg/IL-17 ratios were normal, the regulatory T cells were still insufficient to suppress the accompanying increases in inflammation. All of these changes suggest a complicated mechanism of pro- and anti-inflammatory imbalance which needs to be further investigated.  相似文献   

2.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

3.

Background

CD8+ T cells (Cytotoxic T cells, Tc) are known to play a critical role in the pathogenesis of smoking related airway inflammation including chronic obstructive pulmonary disease (COPD). However, how cigarette smoke directly impacts systematic CD8+ T cell and regulatory T cell (Treg) subsets, especially by modulating muscarinic acetylcholine receptors (MRs), has yet to be well elucidated.

Methods

Circulating CD8+ Tc/Tregs in healthy nonsmokers (n = 15), healthy smokers (n = 15) and COPD patients (n = 18) were evaluated by flow cytometry after incubating with anti-CD3, anti-CD8, anti-CD25, anti-Foxp3 antibodies. Peripheral blood T cells (PBT cells) from healthy nonsmokers were cultured in the presence of cigarette smoke extract (CSE) alone or combined with MRs agonist/antagonist for 5 days. Proliferation and apoptosis were evaluated by flow cytometry using Ki-67/Annexin-V antibodies to measure the effects of CSE on the survival of CD8+ Tc/Tregs.

Results

While COPD patients have elevated circulating percentage of CD8+ T cells, healthy smokers have higher frequency of CD8+ Tregs. Elevated percentages of CD8+ T cells correlated inversely with declined FEV1 in COPD. CSE promoted the proliferation and inhibited the apoptosis of CD8+ T cells, while facilitated both the proliferation and apoptosis of CD8+ Tregs. Notably, the effects of CSE on CD8+ Tc/Tregs can be mostly simulated or attenuated by muscarine and atropine, the MR agonist and antagonist, respectively. However, neither muscarine nor atropine influenced the apoptosis of CD8+ Tregs.

Conclusion

The results imply that cigarette smoking likely facilitates a proinflammatory state in smokers, which is partially mediated by MR dysfunction. The MR antagonist may be a beneficial drug candidate for cigarette smoke-induced chronic airway inflammation.  相似文献   

4.

Background

We found the first evidence of the efficacy of a herbal treatment with myrrh, dry extract of chamomile flowers, and coffee charcoal for ulcerative colitis (UC). However, the impact of the herbal treatment on the CD4+ T-cell compartment, which is essential for both the induction of UC and the maintenance of tolerance in the gut, is not well understood.

Aim

To analyze the frequency and functional phenotype of CD4+ T cells and of immune-suppressive CD4+CD25high regulatory T cells (Tregs) in healthy control subjects, patients with UC in remission, and patients with clinical flare of UC.

Methods

Patients in clinical remission were treated with either mesalazine or the herbal preparation for 12 months. The frequencies of whole CD4+ T cells, CD4+CD25med effector T cells, and Tregs and the expression of Foxp3 within the CD4+CD25hig Tregs were determined by flow cytometry at 6 time points. We determined the suppressive capability of Tregs from healthy control subjects and from patients in remission or clinical flare.

Results

A total of 79 patients (42 women, 37 men; mean age, 48.5 years; 38 with clinical flare) and 5 healthy control subjects were included in the study. At baseline the frequencies of whole CD4+ T cells, CD4+CD25med effector cells, and Tregs did not differ between the two treatment groups and the healthy control subjects. In addition, patients with UC in sustained clinical remission showed no alteration from baseline after 1, 3, 6, 9, or 12 months of either treatment. In contrast, CD4+ T cells, CD4+CD25medeffector T cells, and Tregs demonstrated distinctly different patterns at time points pre-flare and flare. The mesalazine group showed a continuous but not statistically significant increase from baseline to pre-flare and flare (p = ns). In the herbal treatment group, however, the percentage of the CD4+ T cells was lower at pre-flare than at baseline. This decrease was completely reversed after flare, when a significant increase was seen (CD4+CD25med pre-flare/flare p = 0.0461; CD4+CD25high baseline/flare p = 0.0269 and pre-flare/flare p = 0.0032). In contrast, no changes in the expression of Foxp3 cells were detected within the subsets of CD4+CD25high regulatory T cells. Of note, no alterations were detected in the suppressive capability of CD4+CD25high regulatory T cells isolated from the peripheral blood of healthy donors, from patients in remission, or from patients with clinical flare.

Conclusions

In patients with UC experiencing acute flare, the CD4+ T compartment demonstrates a distinctly different pattern during treatment with myrrh, chamomile extract, and coffee charcoal than during treatment with mesalazine. These findings suggest an active repopulation of regulatory T cells during active disease.

Trial Registration

EU Clinical Trials Register 2007-007928-18/DE  相似文献   

5.

Background

Primary immune thrombocytopenia (ITP) is an autoimmune heterogeneous disorder that is characterized by decreased platelet count. Regulatory T (Treg) cells and T helper type 17 (Th17) cells are two subtypes of CD4+ T helper (Th) cells. They play opposite roles in immune tolerance and autoimmune diseases, while they share a common differentiation pathway. The imbalance of Treg/Th17 has been demonstrated in several autoimmune diseases. In this study, we aimed to investigate the ratio of the number of Treg cells to the number of Th17 cells in ITP patients and evaluate the clinical implications of the alterations in this ratio.

Methods

Thirty adult patients with newly diagnosed ITP enrolled in this study. Twelve patients had been clinically followed up for 12 months. The percentages of CD4+CD25hiFoxp3+ Treg cells and CD3+CD4+IL-17-producing Th17 cells in these patients and healthy controls (n = 17) were longitudinally analyzed by flow cytometry.

Results

The percentage of Treg cells in ITP patients was significantly lower than that of healthy controls, and the percentage of Th17 cells increased significantly at disease onset. The ratio of Treg/Th17 correlated with the disease activity.

Conclusion

The ratio of Treg/Th17 might be relevant to the clinical diversity of ITP patients, and this Treg/Th17 ratio might have prognostic role in ITP patients.  相似文献   

6.

Objective

To observe the proportion of peripheral T follicular helper (Tfh) cells in patients with systemic lupus erythematosus (SLE) and to assess the role of steroids on Tfh cells from SLE patients.

Methods

Peripheral blood mononuclear cells (PBMCs) from 42 SLE patients and 22 matched healthy subjects were collected to assess proportions of circulating CXCR5+PD1+/CD4+ T cells (Tfh), CD4+CCR6+ T cells (Th17-like) and CD19+CD138+ plasma cells by flow cytometry. 8 of the patients had their blood redrawn within one week after receiving methylprednisolone pulse treatment. Disease activity was evaluated by SLE disease activity index. To test the effect of IL-21 and corticosteroids on Tfh cells in vitro, PBMCs harvested from another 15 SLE patients were cultured with medium, IL-21, or IL-21+ dexamethasone for 24 hours and 72 hours. PBMCs from an independent 23 SLE patients were cultured with different concentrations of dexamethasone for 24 hours.

Results

Compared to normal controls, percentages of circulating Tfh cells, but not Th17 cells, were elevated in SLE patients and correlated with disease activity. Proportions of Tfh cells in SLE patients were positively correlated with those of plasma cells and serum levels of antinuclear antibodies. After methylprednisolone pulse treatment, both percentages and absolute numbers of circulating Tfh cells were significantly decreased. In vitro cultures showed an increase of Tfh cell proportion after IL-21 stimulation that was totally abolished by the addition of dexamethasone. Both 0.5 and 1 µM dexamethasone decreased Tfh cells dose dependently (overall p = 0.013).

Conclusions

We demonstrated that elevated circulating Tfh cell proportions in SLE patients correlated with their disease activities, and circulating levels of plasma cells and ANA. Corticosteroids treatment down-regulated aberrant circulating Tfh cell proportions both in vivo and in vitro, making Tfh cells a new treatment target for SLE patients.  相似文献   

7.

Objective

Immune imbalance between regulatory T (Treg) and Th17 cells is a characteristic of systemic sclerosis (SSc). The functional heterogeneity among Treg can be elucidated by separating Treg into different subsets based on the expression of FoxP3 and CD45RA. The aim of this study was to investigate the role of Treg subsets in the immune imbalance in naïve SSc.

Methods

Peripheral blood mononuclear cells (PBMCs) of 31 SSc patients and 33 healthy controls were analyzed for the expression of CD4, CD25, CD45RA, CTLA-4, FoxP3, and IL-17 using flow cytometry. Treg immunesuppression capacity was measured in co-culture experiments. The expression of FoxP3, CTLA-4, IL-17A, and RORC mRNA was measured by real-time PCR.

Results

The frequency of CD4+CD25+FoxP3+ Treg cells was significantly elevated in patients with SSc (3.62±1.14 vs 1.97±0.75, p<0.001) with diminished immunosuppression capacity. In SSc, the proportion of FoxP3highCD45RA activated Treg cells (aTreg) was decreased, the proportion of FoxP3lowCD45RA T cells was increased, and the proportion of FoxP3lowCD45RA+ resting Treg cells (rTreg) was decreased. The immune suppression capacity of aTreg and rTreg was diminished, while FoxP3lowCD45RA T cells exhibited a lack of suppression capacity. The immune dysfunction of aTreg was accompanied by the abnormal expression of CTLA-4. Th17 cell numbers were elevated in SSc, FoxP3lowCD45RA T cells produced IL-17, confirming their Th17 potential, which was consistent with the elevated levels of FoxP3+IL-17+ cells in SSc.

Conclusion

A decrease in aTreg levels, along with functional deficiency, and an increase in the proportion of FoxP3lowCD45RA T cells, was the reason for the increase in dysfunctional Treg in SSc patients, potentially causing the immune imbalance between Treg and Th17 cells.  相似文献   

8.

Background

CD4+ T cells are of great importance in the pathogenesis of systemic lupus erythematosus (SLE), as an imbalance between CD4+ regulatory T cells (Tregs) and CD4+ responder T cells (Tresps) causes flares of active disease in SLE patients. In this study, we aimed to find the role of aberrant Treg/Tresp cell differentiation for maintaining Treg/Tresp cell balance and Treg functionality.

Methods

To determine differences in the differentiation of Tregs/Tresps we calculated the percentages of CD45RA+CD31+ recent thymic emigrant (RTE) Tregs/Tresps and CD45RA+CD31? mature naive (MN) Tregs/Tresps, as well as CD45RA?CD31+ and CD45RA?CD31? memory Tregs/Tresps (CD31+ and CD31? memory Tregs/Tresps) within the total Treg/Tresp pool of 78 SLE remission patients compared with 94 healthy controls of different ages. The proliferation capacity of each Treg/Tresp subset was determined by staining the cells with anti-Ki67 monoclonal antibodies. Differences in the autologous or allogeneic Treg function between SLE remission patients and healthy controls were determined using suppression assays.

Results

With age, we found an increased differentiation of RTE Tregs via CD31+ memory Tregs and of RTE Tresps via MN Tresps into CD31? memory Tregs/Tresp in healthy volunteers. This opposite differentiation of RTE Tregs and Tresps was associated with an age-dependent increase in the suppressive activity of both naive and memory Tregs. SLE patients showed similar age-dependent Treg cell differentiation. However, in these patients RTE Tresps differentiated increasingly via CD31+ memory Tresps, whereby CD31? memory Tresps arose that were much more difficult to inhibit for Tregs than those that emerged through differentiation via MN Tresps. Consequently, the increase in the suppressive activity of Tregs with age could not be maintained in SLE patients. Testing the Tregs of healthy volunteers and SLE patients with autologous and nonautologous Tresps revealed that the significantly decreased Treg function in SLE patients was not exclusively attributed to an age-dependent diminished sensitivity of the Tresps for Treg suppression. The immunosuppressive therapy reduced the accelerated age-dependent Tresp cell proliferation to normal levels, but simultaneously inhibited Treg cell proliferation below normal levels.

Conclusions

Our data reveal that the currently used immunosuppressive therapy has a favorable effect on the differentiation and proliferation of Tresps but has a rather unfavorable effect on the proliferation of Tregs. Newer substances with more specific effects on the immune system would be desirable.
  相似文献   

9.

Background

Regulatory T cells (Tregs) were shown to be central in maintaining immunological homeostasis and preventing the development of autoimmune diseases. Several subsets of Tregs have been identified to date; however, the dynamics of the interactions between these subsets, and their implications on their regulatory functions are yet to be elucidated.

Methodology/Principal Findings

We employed a combination of mathematical modeling and frequent in vivo measurements of several T cell subsets. Healthy BALB/c mice received a single injection of either hCDR1 - a tolerogenic peptide previously shown to induce Tregs, a control peptide or vehicle alone, and were monitored for 16 days. During this period, splenocytes from the treated mice were analyzed for the levels of CD4, CD25, CD8, CD28 and Foxp3. The collected data were then fitted to mathematical models, in order to test competing hypotheses regarding the interactions between the followed T cell subsets. In all 3 treatment groups, a significant, lasting, non-random perturbation of the immune system could be observed. Our analysis predicted the emergence of functional CD4 Tregs based on inverse oscillations of the latter and CD4+CD25 cells. Furthermore, CD4 Tregs seemed to require a sufficiently high level of CD8 Tregs in order to become functional, while conversion was unlikely to be their major source. Our results indicated in addition that Foxp3 is not a sufficient marker for regulatory activity.

Conclusions/Significance

In this work, we unraveled the dynamics of the interplay between CD4, CD8 Tregs and effector T cells, using, for the first time, a mathematical-mechanistic perspective in the analysis of Treg kinetics. Furthermore, the results obtained from this interdisciplinary approach supported the notion that CD4 Tregs need to interact with CD8 Tregs in order to become functional. Finally, we generated predictions regarding the time-dependent function of Tregs, which can be further tested empirically in future work.  相似文献   

10.

Background

IL-22 and IL-17A are implicated in the pathogenesis of autoimmune diseases. However, the role of IL-22+ and IL-17A+ CD4+ T cells in the pathogenesis of Hashimoto’s thyroiditis (HT) is not fully understood. This study investigates serum IL-22 and IL-17A levels and determines the frequency of circulating IL-22+ CD4+ T cells in HT patients to understand their roles in the pathogenesis of HT.

Methods

The levels of serum IL-22, IL-17A and IFN-γ and the frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells in 17 HT patients and 17 healthy controls (HC) were determined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The levels of serum free triiodothyronine (FT4), free thyroxine (FT3), thyroid stimulating hormone (TSH), anti-thyroid peroxidase (TPO) and anti-thyroglobulin antibodies (TgAb) by chemiluminescent enzyme immunoassay and radioimmunoassay.

Results

The percentages of circulating IL-22+CD4+ and IL-17+CD4+ T cells (p<0.0001, p<0.0001) and the levels of serum IL-22, IL-17A and IFN-γ (p<0.0001, p<0.0001, p = 0.0210) in the HT patients were significantly higher than that in the HC. The percentages of IL-22+CD4+ T cells were positively correlated with Th17 cells (r = 0.8815, p<0.0001) and IL-17A+IL-22+CD4+ T cells (r = 0.8914, p<0.0001), but were negatively correlated with Th1 cells (r = −0.6110, p<0.0092) in the HT patients. The percentages of Th22 cells, Th17 cells and IL-17A+IL-22+CD4+ T cells were negatively correlated with the levels of serum TSH in the HT patients (r = −0.8402, p<0.0001; r = −0.8589, p<0.0001; r = −0.8289 p<0.0001, respectively).

Conclusions

A higher frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells may be associated with the development of HT in Chinese patients.  相似文献   

11.
CD4+ regulatory T cells (Tregs) are essential for the maintenance of the immune system''s equilibrium, by dampening the activation of potential auto-reactive T cells and avoiding excessive immune activation. To correctly perform their function, Tregs must be maintained at the right proportion with respect to effector T cells. Since this equilibrium is frequently disrupted in individuals infected with the human immunodeficiency virus (HIV), we hypothesize that its deregulation could hamper immune reconstitution in patients with poor CD4+ T cell recovery under highly active antiretroviral therapy (HAART). We analysed Tregs percentages amongst CD4+ T cells in 53 HIV-infected patients under HAART, with suppression of viral replication and distinct levels of immune reconstitution. As controls, 51 healthy individuals were also analysed. We observed that amongst the patients with Nadir values (the lowest CD4+ T cell counts achieved) <200 cells/µL, the individuals with high Tregs percentages (≥10% of total CD4+ T cells) had the worse CD4+ T cell reconstitution. In accordance, the well-described direct correlation between the Nadir value and CD4+ T cell reconstitution is clearly more evident in individuals with high Tregs proportions. Furthermore, we observed a strong negative correlation between Tregs percentages and CD4+ T cell recovery among immunological non-responder HIV+ individuals. All together, this work shows that high Tregs frequency is an important factor associated with sub-optimal CD4+ T cell recovery. This is particularly relevant for immunological non-responders with low Nadir values. Our results suggest that the Tregs proportion might be of clinical relevance to define cut-offs for HAART initiation.  相似文献   

12.

Background

Syphilis, a sexually transmitted disease caused by spirochetal bacterium Treponema pallidum, can progress to affect the central nervous system, causing neurosyphilis. Accumulating evidence suggest that regulatory T cells (Tregs) may play an important role in the pathogenesis of syphilis. However, little is known about Treg response in neurosyphilis.

Methodology/Principal Findings

We analyzed Treg frequencies and Transforming Growth Factor-β (TGF-β) levels in the blood and CSF of 431 syphilis patients without neurological involvement, 100 neurosyphilis patients and 100 healthy donors. Suppressive function of Tregs in peripheral blood was also assessed. Among syphilis patients without neurological involvement, we found that secondary and serofast patients had increased Treg percentages, suppressive function and TGF-β levels in peripheral blood compared to healthy donors. Serum Rapid Plasma Reagin (RPR) titers were positively correlated with Treg numbers in these patients. Compared to these syphilis patients without neurological involvement, neurosyphilis patients had higher Treg frequency in peripheral blood. In the central nervous system, neurosyphilis patients had higher numbers of leukocytes in CSF compared to syphilis patients without neurological involvement. CD4+ T cells were the predominant cell type in the inflammatory infiltrates in CSF of neurosyphilis patients. Interestingly, among these neurosyphilis patients, a significant decrease in CSF CD4+ CD25high Treg percentage and number was observed in symptomatic neurosyphilis patients compared to those of asymptomatic neurosyphilis patients, which may be associated with low CSF TGF-β levels.

Conclusions

Our findings suggest that Tregs might play an important role in both bacterial persistence and neurologic compromise in the pathogenesis of syphilis.  相似文献   

13.

Background

Salmeterol and fluticasone combination (SFC) has anti-inflammatory effects and improves clinical symptoms in patients with chronic obstructive pulmonary disease (COPD). However, the anti-inflammatory mechanism of SFC remains unclear. In this study, we investigated the inflammatory responses of COPD, as well as the relationship of the inflammatory factors with the levels of CD4+CD25+Foxp3+ regulatory T cells (Foxp3+Tregs) after SFC therapy.

Methods

Twenty-one patients with moderate or severe COPD received treatment with 50/500 μg of SFC twice a day for 12 weeks. Before and after treatment, the patients were evaluated using the Modified Medical Research Council (MMRC) dyspnea scale and by conducting a 6-min walk test. The number of neutrophils, monocytes and lymphocytes in induced sputum were counted. Levels of cytokines, including pre-inflammatory IL-8, TNF-α, IL-17A and cytokine IL-10, in the sputum supernatant and peripheral blood were measured by ELISA. The proportion of Foxp3+Tregs in the total CD4+ T cell of the peripheral blood was determined by flow cytometry. The relationship between IL-17A levels and the percentage of Foxp3+Tregs was analyzed by statistical analysis.

Results

After treatment with SFC, the forced expiratory volume in 1 s as a percentage of predicted values (FEV1%) and the 6-min walk distance in the COPD patients significantly increased, while dyspnea scores decreased. The total number of cells, neutrophils, and the percentage of neutrophils in induced sputum reduced notably, while the proportion of monocytes was significantly increased. Levels of the inflammatory cytokines IL-8, TNF-α, and IL-17A in the sputum supernatant and in the blood were markedly lowered, while IL-10 levels were unchanged. The proportion of Foxp3+Tregs in the total CD4+T cell population in the peripheral blood was drastically higher than that before treatment. The level of IL-17A was negatively correlated with the proportion of Foxp3+Tregs in CD4+T cells.

Conclusion

SFC can reduce the levels of inflammatory factors and improve symptoms of COPD. The levels of inflammatory factors are associated with the variation of Foxp3+Tregs in COPD.

Trial registration

This study was registered with http://www.chictr.org (Chinese Clinical Trial Register) as follows: ChiCTR-TNC-10001270  相似文献   

14.

Introduction

During HIV infection the severe depletion of intestinal CD4+ T-cells is associated with microbial translocation, systemic immune activation, and disease progression. This study examined intestinal and peripheral CD4+ T-cell subsets reconstitution under combined antiretroviral therapy (cART), and systemic immune activation markers.

Methods

This longitudinal single-arm pilot study evaluates CD4+ T cells, including Th1 and Th17, in gut and blood and soluble markers for inflammation in HIV-infected individuals before (M0) and after eight (M8) months of cART. From January 2010 to December 2011, 10 HIV-1 naïve patients were screened and 9 enrolled. Blood and gut CD4+ T-cells subsets and cellular immune activation were determined by flow-cytometry and plasma soluble CD14 by ELISA. CD4+ Th17 cells were detected in gut biopsies by immunohistochemistry. Microbial translocation was measured by limulus-amebocyte-lysate assay to detect bacterial lipopolysaccharide (LPS) and PCR Real Time to detect plasma bacterial 16S rDNA.

Results

Eight months of cART increased intestinal CD4+ and Th17 cells and reduced levels of T-cell activation and proliferation. The magnitude of intestinal CD4+ T-cell reconstitution correlated with the reduction of plasma LPS. Importantly, the magnitude of Th17 cells reconstitution correlated directly with blood CD4+ T-cell recovery.

Conclusion

Short-term antiretroviral therapy resulted in a significant increase in the levels of total and Th17 CD4+ T-cells in the gut mucosa and in decline of T-cell activation. The observation that pre-treatment levels of CD4+ and of CD8+ T-cell activation are predictors of the magnitude of Th17 cell reconstitution following cART provides further rationale for an early initiation of cART in HIV-infected individuals.

Trial Registration

ClinicalTrials.gov NCT02097381  相似文献   

15.

Introduction

CD4+CD25+/highCD127low/- regulatory T cells (Tregs) play a crucial role in maintaining peripheral tolerance. Data about the frequency of Tregs in rheumatoid arthritis (RA) are contradictory and based on the analysis of peripheral blood (PB) and synovial fluid (SF). Because Tregs exert their anti-inflammatory activity in a contact-dependent manner, the analysis of synovial membrane (SM) is crucial. Published reports regarding this matter are lacking, so we investigated the distribution and phenotype of Tregs in concurrent samples of SM, SF and PB of RA patients in comparison to those of osteoarthritis (OA) patients.

Methods

Treg frequency in a total of 40 patients (18 RA and 22 OA) matched for age and sex was assessed by flow cytometry. Functional status was assessed by analysis of cell surface markers representative of activation, memory and regulation.

Results

CD4+ T cells infiltrate the SM to higher frequencies in RA joints than in OA joints (P = 0.0336). In both groups, Tregs accumulate more within the SF and SM than concurrently in PB (P < 0.0001). Relative Treg frequencies were comparable in all compartments of RA and OA, but Treg concentration was significantly higher in the SM of RA patients (P = 0.025). Both PB and SM Tregs displayed a memory phenotype (CD45RO+RA-), but significantly differed in activation status (CD69 and CD62L) and markers associated with Treg function (CD152, CD154, CD274, CD279 and GITR) with only minor differences between RA and OA.

Conclusions

Treg enrichment into the joint compartment is not specific to inflammatory arthritis, as we found that it was similarly enriched in OA. RA pathophysiology might not be due to a Treg deficiency, because Treg concentration in SM was significantly higher in RA. Synovial Tregs represent a distinct phenotype and are activated effector memory cells (CD62L-CD69+), whereas peripheral Tregs are resting central memory cells (CD62L+CD69-).  相似文献   

16.

Background

BALB/c mice are highly susceptible while C57BL/6 are relatively resistant to experimental Trypanosoma congolense infection. Although regulatory T cells (Tregs) have been shown to regulate the pathogenesis of experimental T. congolense infection, their exact role remains controversial. We wished to determine whether Tregs contribute to distinct phenotypic outcomes in BALB/c and C57BL/6 mice and if so how they operate with respect to control of parasitemia and production of disease-exacerbating proinflammatory cytokines.

Methodology/Findings

BALB/c and C57BL/6 mice were infected intraperitoneally (i.p) with 103 T. congolense clone TC13 and both the kinetics of Tregs expansion and intracellular cytokine profiles in the spleens and livers were monitored directly ex vivo by flow cytometry. In some experiments, mice were injected with anti-CD25 mAb prior or post T. congolense infection or adoptively (by intravenous route) given highly enriched naïve CD25+ T lymphocytes prior to T. congolense infection and the inflammatory cytokine/chemokine levels and survival were monitored. In contrast to a transient and non significant increase in the percentages and absolute numbers of CD4+CD25+Foxp3+ T cells (Tregs) in C57BL/6 mouse spleens and livers, a significant increase in the percentage and absolute numbers of Tregs was observed in spleens of infected BALB/c mice. Ablation or increasing the number of CD25+ cells in the relatively resistant C57BL/6 mice by anti-CD25 mAb treatment or by adoptive transfer of CD25+ T cells, respectively, ameliorates or exacerbates parasitemia and production of proinflammatory cytokines.

Conclusion

Collectively, our results show that regulatory T cells contribute to susceptibility in experimental murine trypanosomiasis in both the highly susceptible BALB/c and relatively resistant C57BL/6 mice.  相似文献   

17.

Background

Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity.

Method

By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection.

Results

Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators.

Conclusion

These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.  相似文献   

18.

Background

Two different Th2 subsets have been defined recently on the basis of IL-5 expression – an IL-5+Th2 subset and an IL-5Th2 subset in the setting of allergy. However, the role of these newly described CD4+ T cells subpopulations has not been explored in other contexts.

Methods

To study the role of the Th2 subpopulation in a chronic, tissue invasive parasitic infection (lymphatic filariasis), we examined the frequency of IL-5+IL-4+IL-13+ CD4+ T cells and IL-5IL-4 IL-13+ CD4+ T cells in asymptomatic, infected individuals (INF) and compared them to frequencies (Fo) in filarial-uninfected (UN) individuals and to those with filarial lymphedema (CP).

Results

INF individuals exhibited a significant increase in the spontaneously expressed and antigen-induced Fo of both Th2 subpopulations compared to the UN and CP. Interestingly, there was a positive correlation between the Fo of IL-5+Th2 cells and the absolute eosinophil and neutrophil counts; in addition there was a positive correlation between the frequency of the CD4+IL-5Th2 subpopulation and the levels of parasite antigen – specific IgE and IgG4 in INF individuals. Moreover, blockade of IL-10 and/or TGFβ demonstrated that each of these 2 regulatory cytokines exert opposite effects on the different Th2 subsets. Finally, in those INF individuals cured of infection by anti-filarial therapy, there was a significantly decreased Fo of both Th2 subsets.

Conclusions

Our findings suggest that both IL-5+ and IL-5Th2 cells play an important role in the regulation of immune responses in filarial infection and that these two Th2 subpopulations may be regulated by different cytokine-receptor mediated processes.  相似文献   

19.

Background

Fingolimod efficiently reduces multiple sclerosis (MS) relapse by inhibiting lymphocyte egress from lymph nodes through down-modulation of sphingosine 1-phosphate (S1P) receptors. We aimed to clarify the alterations in peripheral blood T cell subsets associated with MS relapse on fingolimod.

Methods/Principal Findings

Blood samples successively collected from 23 relapsing-remitting MS patients before and during fingolimod therapy (0.5 mg/day) for 12 months and 18 healthy controls (HCs) were analysed for T cell subsets by flow cytometry. In MS patients, the percentages of central memory T (CCR7+CD45RO+) cells (TCM) and naïve T (CCR7+CD45RO-) cells decreased significantly, while those of effector memory T (CCR7-CD45RA-) and suppressor precursor T (CD28-) cells increased in both CD4+T and CD8+T cells from 2 weeks to 12 months during fingolimod therapy. The percentages of regulatory T (CD4+CD25highCD127low) cells in CD4+T cells and CCR7-CD45RA+T cells in CD8+T cells also increased significantly. Eight relapsed patients demonstrated greater percentages of CD4+TCM than 15 non-relapsed patients at 3 and 6 months (p=0.0051 and p=0.0088, respectively). The IL17-, IL9-, and IL4-producing CD4+T cell percentages were significantly higher at pre-treatment in MS patients compared with HCs (p<0.01 for all), while the IL17-producing CD4+T cell percentages tended to show a transient increase at 2 weeks of fingolimod therapy (pcorr=0.0834).

Conclusions

The CD4+TCM percentages at 2 weeks to 12 months during fingolimod therapy are related to relapse.  相似文献   

20.

Introduction

IL-10--producing B cells, Foxp3-expressing T cells (Tregs) and the IDO-expressing dendritic cells (pDC) are able to modulate inflammatory processes, to induce immunological tolerance and, in turn, to inhibit the pathogenesis of autoimmune disease.The aim of the study was to characterize and to enumerate peripheral IL-10--producing B cells, Tregs and pDCregs in primary Sjögren''s Syndrome (pSS) patients in regard of their clinical and serologic activity.

Methods

Fifty pSS patients and 25 healthy individuals were included in the study. CD19+--expressing peripheral B lymphocytes were purified by positive selection. CD19+/CD24hi/CD38hi/IL-10--producing B cells, CD4+/CD25hi/Foxp3+ and CD8+/CD28-/Foxp3+ Tregs, as well as CCR6+/CD123+/IDO+ DCs, were quantitated by flow cytometry.

Results

Immature/transitional circulating IgA+ IL-10--producing B cells had higher levels in pSS patients versus control group, whereas CD19+/CD38hi/IgG+/IL-10+ cells had lower percentage versus control. Indeed CD19+/CD24hi/CD38hi/CD5+/IL-10+, CD19+/CD24hi/CD38hi/CD10+/IL-10+, CD19+/CD24hi/CD38hi/CD20+/IL-10+, CD19+/CD24hi/CD38hi/CD27-/IL-10+, and CD19+/CD24hi/CD38hi/CXCR7+/IL-10+ cells had higher frequency in clinical inactive pSS patients when compared with control group. Remarkably, only percentages of CD19+/CD24hi/CD38hi/CD10+/IL-10+ and CD19+/CD24hi/CD38hi/CD27-/IL-10+ subsets were increased in pSS serologic inactive versus control group (P < 0.05). The percentage of IDO-expressing pDC cells was higher in pSS patients regardless of their clinical or serologic activity. There were no statistically significant differences in the percentage of CD4+/CD25hi/Foxp3+ Tregs between patient groups versus controls. Nonetheless, a decrease in the frequency of CD8+/CD28-/Foxp3+ Tregs was found in inactive pSS patients versus controls (P < 0.05).

Conclusions

The findings of this exploratory study show that clinical inactive pSS patients have an increased frequency of IL-10--producing B cells and IDO-expressing pDC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号