首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRK2/PKNγ is a Rho effector and a member of the protein kinase C superfamily of serine/threonine kinases. Here, we explore the structure-function relationship between various motifs in the C-terminal half of PRK2 and its kinase activity and regulation. We report that two threonine residues at conserved phosphoacceptor position in the activation loop and the turn motif are essential for the catalytic activity of PRK2, but the phosphomimetic Asp-978 at hydrophobic motif is dispensable for kinase catalytic competence. Moreover, the PRK2-Δ958 mutant with the turn motif truncated still interacts with 3-phosphoinositide-dependent kinase-1 (PDK-1). Thus, both the intact hydrophobic motif and the turn motif in PRK2 are dispensable for the binding of PDK-1. We also found that while the last seven amino acid residues at the C-terminus of PRK2 are not required for the activation of the kinase by RhoA in vitro, however, the extreme C-terminal segment is critical for the full activation of PRK2 by RhoA in cells in a GTP-dependent manner. Our data suggest that the extreme C-terminus of PRK2 may represent a potential drug target for effector-specific pharmacological intervention of Rho-medicated biological processes.  相似文献   

2.
In this article, we explore the role of the C-terminus (V5 domain) of PKCepsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCepsilon resulted in a PKCepsilon-Delta731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCepsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCepsilon were involved in interactions with residues in the catalytic core. Further truncation analyses revealed that the hydrophobic phosphorylation motif was dispensable for the physical interaction between PKCepsilon and 3-phosphoinositide-dependent kinase-1 (PDK-1) as the PKCepsilon mutant lacking both the turn and the hydrophobic motifs could still be co-immunoprecipitated with PDK-1. These results provide fresh insights into the biochemical and structural basis underlying the isozyme-specific regulation of PKC and suggest that the very C-termini of PKCs constitute a promising new target for the development of novel isozyme-specific inhibitors of PKC.  相似文献   

3.
PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA. Deletion of the HR1 region did not completely abolish the binding of PRK1-DeltaHR1 to GTPgammaS-RhoA nor the activation of this mutant by GTPgammaS-RhoA in vitro. In contrast, removing of the last six amino acid residues from the C-terminus of PRK1 or truncating of a single C-terminal residue from PRK1-DeltaHR1 completely abrogated the activation of these mutants by RhoA both in vitro and in vivo. The critical dependence of the very C-terminus of PRK1 on the signaling downstream of RhoA was further demonstrated by the failure of the PRK1 mutant lacking its six C-terminal residues to augment lisophosphatidic acid-elicited neurite retraction in neuronal cells. Thus, we show that the HR1 region is necessary but not sufficient in eliciting a full activation of PRK1 upon binding of RhoA. Instead, such activation is controlled by the very C-terminus of PRK1. Our results also suggest that the very C-terminus of PRK1, which is the least conserved among members of the protein kinase C superfamily, is a potential drug target for pharmacological intervention of RhoA-mediated signaling pathways.  相似文献   

4.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

5.
The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays. The PKCalpha C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCalpha immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCalpha immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCalpha is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCalpha function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.  相似文献   

6.
Like all members of the Na(+)/Cl(-)-dependent neurotransmitter transporter family, the rat gamma-aminobutyric acid transporter-1 (GAT1) is sorted and targeted to specialized domains of the cell surface. Here we identify two discontinuous signals in the carboxyl terminus of GAT1 that cooperate to drive surface expression. This conclusion is based on the following observations. Upon deletion of the last 37 amino acids, the resulting GAT1-Delta37 remained trapped in the endoplasmic reticulum. The presence of 10 additional residues (GAT1-Delta27) sufficed to support the interaction with the coat protein complex II component Sec24D; surface expression of GAT1-Delta27 reached 50% of the wild type level. Additional extensions up to the position -3 (GAT1-Delta3) did not further enhance surface expression. Thus the last three amino acids (AYI) comprise a second distal signal. The sequence AYI is reminiscent of a type II PDZ-binding motif; accordingly substituting Glu for Ile abrogated the effect of this motif. Neither the AYI motif nor the last 10 residues rescued the protein from intracellular retention when grafted onto GAT1-Delta37 and GAT1-Delta32; the AYI motif was dispensable for targeting of GAT1 to the growth cone of differentiating PC12 cells. We therefore conclude that the two segments act in a hierarchical manner such that the proximal motif ((569)VMI(571)) supports endoplasmic reticulum export of the protein and the distal AYI motif places GAT1 under the control of the exocyst.  相似文献   

7.
The identification of phosphoinositide-dependent kinase-1 (PDK-1) as an activating kinase for members of the AGC family of kinases has led to its implication as the activating kinase for cAMP-dependent protein kinase. It has been established in vitro that PDK-1 can phosphorylate the catalytic (C) subunit (), but the Escherichia coli-expressed C-subunit undergoes autophosphorylation. To assess which of these mechanisms occurs in mammalian cells, a set of mutations was engineered flanking the site of PDK-1 phosphorylation, Thr-197, on the activation segment of the C-subunit. Two distinct requirements appeared for autophosphorylation and phosphorylation by PDK-1. Autophosphorylation was disrupted by mutations that compromised activity (Thr-201 and Gly-200) or altered substrate recognition (Arg-194). Conversely, only residues peripheral to Thr-197 altered PDK-1 phosphorylation, including a potential hydrophobic PDK-1 binding site at the C terminus. To address the in vivo requirements for phosphorylation, select mutant proteins were transfected into COS-7 cells, and their phosphorylation state was assessed with phospho-specific antibodies. The phosphorylation pattern of these mutant proteins indicates that autophosphorylation is not the maturation mechanism in the eukaryotic cell; instead, a heterologous kinase with properties resembling the in vitro characteristics of PDK-1 is responsible for in vivo phosphorylation of PKA.  相似文献   

8.
Background: Phosphorylation critically regulates the catalytic function of most members of the protein kinase superfamily. One such member, protein kinase C (PKC), contains two phosphorylation switches: a site on the activation loop that is phosphorylated by another kinase, and two autophosphorylation sites in the carboxyl terminus. For conventional PKC isozymes, the mature enzyme, which is present in the detergent-soluble fraction of cells, is quantitatively phosphorylated at the carboxy-terminal sites but only partially phosphorylated on the activation loop.Results: This study identifies the recently discovered phosphoinositide-dependent kinase 1, PDK-1, as a regulator of the activation loop of conventional PKC isozymes. First, studies in vivo revealed that PDK-1 controls the amount of mature (carboxy-terminally phosphorylated) conventional PKC. More specifically, co-expression of the conventional PKC isoform PKC βII with a catalytically inactive form of PDK-1 in COS-7 cells resulted in both the accumulation of non-phosphorylated PKC and a corresponding decrease in PKC activity. Second, studies in vitro using purified proteins established that PDK-1 specifically phosphorylates the activation loop of PKC α and βII. The phosphorylation of the mature PKC enzyme did not modulate its basal activity or its maximal cofactor-dependent activity. Rather, the phosphorylation of non-phosphorylated enzyme by PDK-1 triggered carboxy-terminal phosphorylation of PKC, thus providing the first step in the generation of catalytically competent (mature) enzyme.Conclusions: We have shown that PDK-1 controls the phosphorylation of conventional PKC isozymes in vivo. Studies performed in vitro establish that PDK-1 directly phosphorylates PKC on the activation loop, thereby allowing carboxy-terminal phosphorylation of PKC. These data suggest that phosphorylation of the activation loop by PDK-1 provides the first step in the processing of conventional PKC isozymes by phosphorylation.  相似文献   

9.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

10.
PKN is a fatty acid- and Rho GTPase-activated protein kinase whose catalytic domain in the carboxyl terminus is homologous to those of protein kinase C (PKC) family members. The amino terminal region of PKN is suggested to function as a regulatory domain, since tryptic cleavage or the binding of Rho GTPase to this region results in protein kinase activation of PKN. The structural basis for the regulation of PKN was investigated by analyzing the activity of a series of deletion/site-directed mutants expressed in insect cells. The amino-terminally truncated form of PKN (residue 455-942) showed low basal activity similar to that of the wild-type enzyme, and was arachidonic acid-dependent. However, further deletion (residue 511-942) resulted in a marked increase in the basal activity and a decrease in the arachidonic acid dependency. A (His)(6)-tagged protein comprising residues 455-511 of PKN (designated His-Ialpha) inhibited the kinase activity of the catalytic fragment of PKN in a concentration-dependent manner in competition with substrate (K(i) = 0.6+/-0.2 microM). His-Ialpha also inhibited the activity of the catalytic fragment of PRK2, an isoform of PKN, but had no inhibitory effect on protein kinase A or protein kinase Cdelta. The IC(50) value obtained in the presence of 40 microM arachidonic acid was two orders of magnitude greater than that in the absence of the modifier. These results indicate that this protein fragment functions as a specific inhibitor of PKN and PRK2, and that arachidonic acid relieves the catalytic activity of wild-type PKN from autoinhibition by residues 455-511 of PKN. Autophosphorylation of wild-type PKN increased the protein kinase activity, however, substitution of Thr64, Ser374, or Thr531 in the regulatory region of PKN with alanine, abolished this effect. Substitution of Thr774 in the activation loop of the catalytic domain of PKN with alanine completely abolished the protein kinase activity. These results suggest that these phosphorylation sites are also important in the regulation of the PKN kinase activity. Potential differences in the mechanism of activation between the catalytic regions of PKN and PRK2 are also discussed.  相似文献   

11.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

12.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

13.
rap1GAP is a GTPase-activating protein that specifically stimulates the GTP hydrolytic rate of p21rap1. We have defined the catalytic domain of rap1GAP by constructing a series of cDNAs coding for mutant proteins progressively deleted at the amino- and carboxy-terminal ends. Analysis of the purified mutant proteins shows that of 663 amino acid residues, only amino acids 75 to 416 are necessary for full GAP activity. Further truncation at the amino terminus resulted in complete loss of catalytic activity, whereas removal of additional carboxy-terminal residues dramatically accelerated the degradation of the protein in vivo. The catalytic domain we have defined excludes the region of rap1GAP which undergoes phosphorylation on serine residues. We have further defined this phosphoacceptor region of rap1GAP by introducing point mutations at specific serine residues and comparing the phosphopeptide maps of the mutant proteins. Two of the sites of phosphorylation by cyclic AMP (cAMP)-dependent kinase were localized to serine residues 490 and 499, and one site of phosphorylation by p34cdc2 was localized to serine 484. In vivo, rap1GAP undergoes phosphorylation at four distinct sites, two of which appear to be identical to the sites phosphorylated by cAMP-dependent kinase in vitro.  相似文献   

14.
We constructed mutant protein kinase C (PKC) cDNAs which expressed PKC activity in vivo in the absence of phorbol ester activation. A hybrid PKC gene, PKAC, was constructed by substituting the coding region for the N-terminal 253 amino acids of PKC alpha with the N-terminal 17 amino acids of the cyclic AMP-dependent protein kinase catalytic subunit (PKA). A truncated PKC gene, delta PKC beta, lacking the coding region for amino acid positions 6 to 159 of PKC beta was also constructed. These mutant kinase genes expressed under the control of the SR alpha promoter activated the c-fos gene enhancer in Jurkat cells and initiated maturation of Xenopus laevis oocytes. Phorbol ester binding activity was absent in both constructs but was preserved in another hybrid gene, PKCA, which was composed of the coding region for 1 to 253 amino acids of PKC alpha at the N-terminal side and the coding region for 18 to 350 amino acids of PKA at the C-terminal side. These results indicate that elimination of the regulatory domain of PKC produces constitutively active PKC that can bypass activation by the phorbol ester. delta PKC beta, in synergy with a calcium ionophore, was capable of activating the interleukin 2 promoter, indicating that cooperation of PKC-dependent and calcium-dependent pathways is necessary for activation of the interleukin 2 gene.  相似文献   

15.
Chen H  Nystrom FH  Dong LQ  Li Y  Song S  Liu F  Quon MJ 《Biochemistry》2001,40(39):11851-11859
Phosphoinositide-dependent kinase-1 (PDK-1) is a serine-threonine kinase downstream from PI 3-kinase that phosphorylates and activates other important kinases such as Akt that are essential for cell survival and metabolism. Previous reports have suggested that PDK-1 has constitutive catalytic activity that is not regulated by stimulation of cells with growth factors. We now show that insulin stimulation of NIH-3T3(IR) cells or rat adipose cells may significantly increase the intrinsic catalytic activity of PDK-1. Insulin treatment of NIH-3T3(IR) fibroblasts overexpressing PDK-1 increased both phosphorylation of recombinant PDK-1 in intact cells and PDK-1 kinase activity in an immune-complex kinase assay. Insulin stimulation of rat adipose cells also increased catalytic activity of endogenous PDK-1 immunoprecipitated from the cells. Both insulin-stimulated phosphorylation and activity of PDK-1 were inhibited by wortmannin and reversed by treatment with the phosphatase PP-2A. A mutant PDK-1 with a disrupted PH domain (W538L) did not undergo phosphorylation or demonstrate increased kinase activity in response to insulin stimulation. Similarly, a PDK-1 phosphorylation site point mutant (S244A) had no increase in kinase activity in response to insulin stimulation. Thus, the insulin-stimulated increase in PDK-1 catalytic activity may involve PI 3-kinase- and phosphorylation-dependent mechanisms. We conclude that the basal constitutive catalytic activity of PDK-1 in NIH-3T3(IR) cells and rat adipose cells can be significantly increased upon insulin stimulation.  相似文献   

16.
A highly conserved lysine in subdomain II is required for high catalytic activity among the protein kinases. This lysine interacts directly with ATP and mutation of this residue leads to a classical "kinase-dead" mutant. This study describes the biophysical and functional properties of a kinase-dead mutant of cAMP-dependent kinase where Lys72 was replaced with His. Although the mutant protein is less stable than the wild-type catalytic subunit, it is fully capable of binding ATP. The results highlight the effect of the mutation on stability and overall organization of the protein, especially the small lobe. Phosphorylation of the activation loop by a heterologous kinase, 3-phosphoinositide-dependent protein kinase-1 (PDK-1) also contributes dramatically to the global organization of the entire active site region. Deuterium-exchange mass spectrometry (DXMS) indicates a concerted stabilization of the entire active site following the addition of this single phosphate to the activation loop. Furthermore the mutant C-subunit is capable of binding both the type I and II regulatory subunits, but only after phosphorylation of the activation loop. This highlights the role of the large lobe as a scaffold for the regulatory subunits independent of catalytic competency and suggests that kinase dead members of the protein kinase superfamily may still have other important biological roles although they lack catalytic activity.  相似文献   

17.
Recent studies identify conventional protein kinase C (PKC) isoform phosphorylations at conserved residues in the activation loop and C terminus as maturational events that influence enzyme activity and targeting but are not dynamically regulated by second messengers. In contrast, this study identifies phorbol 12-myristoyl 13-acetate (PMA)- and norepinephrine-induced phosphorylations of PKC epsilon (at the C-terminal hydrophobic motif) and PKC delta (at the activation loop) as events that accompany endogenous novel PKC (nPKC) isoform activation in neonatal rat cardiomyocytes. Agonist-induced nPKC phosphorylations are prevented (and the kinetics of PMA-dependent PKC down-regulation are slowed) by pharmacologic inhibitors of nPKC kinase activity. PKC delta is recovered from PMA-treated cultures with increased in vitro lipid-independent kinase activity (and altered substrate specificity); the PMA-dependent increase in PKC delta kinase activity is attenuated when PKC delta activation loop phosphorylation is prevented. To distinguish roles of individual nPKC isoforms in nPKC phosphorylations, wild-type (WT) and dominant negative (DN) PKC delta and PKC epsilon mutants were introduced into cardiomyocyte cultures using adenovirus-mediated gene transfer. WT-PKC delta and WT-PKC epsilon are highly phosphorylated at activation loop and hydrophobic motif sites, even in the absence of allosteric activators. DN-PKC delta is phosphorylated at the activation loop but not the hydrophobic motif; DN-PKC epsilon is phosphorylated at the hydrophobic motif but not the activation loop. Collectively, these results identify a role for PKC epsilon in nPKC activation loop phosphorylations and PKC delta in nPKC hydrophobic motif phosphorylations. Agonist-induced nPKC isoform phosphorylations that accompany activation/translocation of the enzyme contribute to the regulation of PKC delta kinase activity, may influence nPKC isoform trafficking/down-regulation, and introduce functionally important cross-talk for nPKC signaling pathways in cardiomyocytes.  相似文献   

18.
Unopposed PI3-kinase activity and 3'-phosphoinositide production in Jurkat T cells, due to a mutation in the PTEN tumour suppressor protein, results in deregulation of PH domain-containing proteins including the serine/threonine kinase PKB/Akt. In Jurkat cells, PKB/Akt is constitutively active and phosphorylated at the activation-loop residue (Thr308). 3'-phosphoinositide-dependent protein kinase-1 (PDK-1), an enzyme that also contains a PH domain, is thought to catalyse Thr308 phosphorylation of PKB/Akt in addition to other kinase families such as PKC isoforms. It is unknown however if the loss of PTEN in Jurkat cells also results in unregulated PDK-1 activity and whether such loss impacts on activation-loop phosphorylation of other putative PDK-1 substrates such as PKC. In this study we have addressed if loss of PTEN in Jurkat T cells affects PDK-1 catalytic activity and intracellular localisation. We demonstrate that reducing the level of 3'-phosphoinositides in Jurkat cells with pharmacological inhibitors of PI3-kinase or expression of PTEN does not affect PDK-1 activity, Ser241 phosphorylation or intracellular localisation. In support of this finding, we show that the levels of PKC activation-loop phosphorylation are unaffected by reductions in the levels of 3'-phosphoinositides. Instead, the dephosphorylation that occurs on PKB/Akt at Thr308 following reductions in 3'-phosphoinositides is dependent on PP2A-like phosphatase activity. Our finding that PDK-1 functions independently of 3'-phosphoinositides in T cells is also confirmed by studies in HuT-78 T cells, a PTEN-expressing cell line with undetectable levels of 3'-phosphoinositides. We conclude therefore that loss of PTEN expression in Jurkat T cells does not impact on the PDK-1/PKC pathway and that only a subset of kinases, such as PKB/Akt, are perturbed as a consequence PTEN loss.  相似文献   

19.
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.  相似文献   

20.
PKN1 is a fatty acid and Rho-activated serine/threonine protein kinase whose catalytic domain is highly homologous to protein kinase C (PKC) family. In yeast two-hybrid screening for PKN1 binding proteins, we identified tumor necrosis factor alpha (TNFalpha) receptor-associated factor 2 (TRAF2). TRAF2 is one of the major mediators of TNF receptor superfamily transducing TNF signal to various functional targets, including activation of NF-kappaB, JNK, and apoptosis. FLAG-tagged PKN1 was co-immunoprecipitated with endogenous TRAF2 from HEK293 cell lysate, and in vitro binding assay using the deletion mutants of TRAF2 showed that PKN1 directly binds to the TRAF domain of TRAF2. PKN1 has the TRAF2-binding consensus sequences PXQX (S/T) at amino acid residues 580-584 (PIQES), and P580AQ582A mutant was not co-immunoprecipitated with TRAF2. Furthermore, the reduced expression of PKN1 by RNA interference (RNAi) down-regulated TRAF2-induced NF-kappaB activation in HEK293T cells. These results suggest that PKN1 is involved in TRAF2-NF-kappaB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号