首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Four genes, VTN, KERA, LYZ, and a non-annotated EST (Affymetrix probe set ID: Ssc.25503.1.S1_at), whose candidacy for traits related to water-holding capacity of meat arises from their trait-dependent differential expression, were selected for candidate gene analysis. Based on in silico analysis SNPs were detected, confirmed by sequencing and used to genotype animals of 4 pig populations including 3 commercial herds of Pietrain (PI), Pietrain × (German Large White × German Landrace) (PIF1), German Landrace (DL) and 1 experimental F2 population Duroc × Pietrain (DUPI). Comparative and genetic mapping established the location of VTN on SSC12, of LYZ and KERA on SSC5 and of UN on SSC7, coinciding with QTL regions for meat quality traits. VTN showed association with pH1, pH24 and drip loss. LYZ revealed association with conductivity 24, pH1 and drip loss. KERA was associated with pH. UN showed association with pH24 and drip loss, respectively. However, none of the candidate genes showed significant associations for a particular trait across all populations. This may be due to breed specific effects that are related to the differences in meat quality of theses pig breeds. The studies revealed statistic evidence for a link of genetic variation at these loci or close to them and promoted those four candidate genes as functional and/or positional candidate genes for meat quality traits.  相似文献   

2.
Ten genes (ANK1, bR10D1, CA3, EPOR, HMGA2, MYPN, NME1, PDGFRA, ERC1, TTN), whose candidacy for meat-quality and carcass traits arises from their differential expression in prenatal muscle development, were examined for association in 1700 performance-tested fattening pigs of commercial purebred and crossbred herds of Duroc, Pietrain, Pietrain x (Landrace x Large White), Duroc x (Landrace x Large White) as well as in an experimental F(2) population based on a reciprocal cross of Duroc and Pietrain. Comparative sequencing revealed polymorphic sites segregating across commercial breeds. Genetic mapping results corresponded to pre-existing assignments to porcine chromosomes or current human-porcine comparative maps. Nine of these genes showed association with meat-quality and carcass traits at a nominal P-value of < or = 0.05; PDGFRA revealed no association reaching the P < or = 0.05 threshold. In particular, HMGA2, CA3, EPOR, NME1 and TTN were associated with meat colour, pH and conductivity of loin 24 h postmortem; CA3 and MYPN exhibited association with ham weight and lean content (FOM) respectively at P-values of < 0.003 that correspond to false discovery rates of < 0.05. However, none of the genes showed significant associations for a particular trait across all populations. The study revealed statistical-genetic evidence for association of the functional candidate genes with traits related to meat quality and muscle deposition. The polymorphisms detected are not likely causal, but markers were identified that are in linkage disequilibrium with causal genetic variation within particular populations.  相似文献   

3.
Several quantitative trait loci (QTL) for important reproductive traits (ovulation rate) have been identified on the porcine chromosome 15 (SSC15). To assist in the selection of positional candidate swine genes for these QTL on SSC15, twenty-one genes had already been assigned to SSC15 in a previous study in our lab, by using the radiation hybrid panel IMpRH. Further polymorphism studies were carried out on these positional candidate genes with four breeds of pigs (Duroc, Erhualian, Dahuabai and Landrace) harboring significant differences in reproduction traits. A total of nineteen polymorphisms were found in 21 genes. Among these, seven in six genes were used for association studies, whereby NRP2 polymorphism was found to be significantly (p < 0.05) associated with litter-size traits. NRP2 might be a candidate gene for pig-litter size based on its chromosome location (Du et al., 2006), significant association with litter-size traits and relationships with Sema and the VEGF super families.  相似文献   

4.
The porcine corticotropin-releasing hormone(CRH) gene is a functional-positional candidate for quantitative tract loci on porcine chromosome 4 with major effects on growth and carcass composition. In addition, the central role of CRH in the neuroendocrine response to stress implicates the CRH gene as a functional candidate for meat quality. Association of a single nucleotide polymorphism (SNP) in the promoter region of the porcine CRH gene (g.233C > T) with several growth, carcass and meat quality traits was examined using more than 2000 individuals from four commercial lines: German Landrace (LR), Pietrain (Pi), German Large White x German Landrace (F1) and the German commercial fattening pig cross of Pietrain x F1 (PiF1). Significant association of the CRH SNP was found with feed conversion ratio in the PiF1 line, with carcass length in the LR line and with lean content in the F1, LR and Pi lines. Moreover, significant association with meat colour was found in the Pi and LR lines; however, the effects were in opposite directions. The presented results indicate that sequence variation in the porcine CRH gene has no major effect on growth and carcass composition in commercial pig lines, although it may significantly contribute to variation in meat quality. The g.233C>T SNP may be in incomplete linkage disequilibrium with causal mutations and/or exhibit effects in the context of DNA variation at other interacting loci.  相似文献   

5.
The aim of this study was to map QTL for meat quality traits in three connected porcine F2 crosses comprising around 1000 individuals. The three crosses were derived from the founder breeds Chinese Meishan, European Wild Boar and Pietrain. The animals were genotyped genomewide for approximately 250 genetic markers, mostly microsatellites. They were phenotyped for seven meat quality traits (pH at 45 min and 24 h after slaughter, conductivity at 45 min and 24 h after slaughter, meat colour, drip loss and rigour). QTL mapping was conducted using a two‐step procedure. In the first step, the QTL were mapped using a multi‐QTL multi‐allele model that was tailored to analyse multiple connected F2 crosses. It considered additive, dominance and imprinting effects. The major gene RYR1:g.1843C>T affecting the meat quality on SSC6 was included as a cofactor in the model. The mapped QTL were tested for pairwise epistatic effects in the second step. All possible epistatic effects between additive, dominant and imprinting effects were considered, leading to nine orthogonal forms of epistasis. Numerous QTL were found. The most interesting chromosome was SSC6. Not all genetic variance of meat quality was explained by RYR1:g.1843C>T. A small confidence interval was obtained, which facilitated the identification of candidate genes underlying the QTL. Epistasis was significant for the pairwise QTL on SSC12 and SSC14 for pH24 and for the QTL on SSC2 and SSC5 for rigour. Some evidence for additional pairwise epistatic effects was found, although not significant. Imprinting was involved in epistasis.  相似文献   

6.
7.
8.
Cho IC  Park HB  Yoo CK  Lee GJ  Lim HT  Lee JB  Jung EJ  Ko MS  Lee JH  Jeon JT 《Animal genetics》2011,42(6):621-626
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F2 intercross between Landrace and Korean native pigs. Eight blood‐related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F2 progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome‐wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood‐related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker‐assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.  相似文献   

9.
《Genomics》2019,111(6):1583-1589
Growth and fat deposition are important economic traits due to the influence on production in pigs. In this study, a dataset of 1200 pigs with 345,570 SNPs genotyped by sequencing (GBS) was used to conduct a GWAS with single-marker regression method to identify SNPs associated with body weight and backfat thickness (BFT) and to search for candidate genes in Landrace and Yorkshire pigs. A total of 27 and 13 significant SNPs were associated with body weight and BFT, respectively. In the region of 149.85–149.89 Mb on SSC6, the SNP (SSC6: 149876737) for body weight and the SNP (SSC6: 149876507) for BFT were in the same locus region (a gap of 230 bp). Two SNPs were located in the DOCK7 gene, which is a protein-coding gene that plays an important role in pigmentation. Two SNPs located on SSC8: 54567459 and SSC11: 33043081 were found to overlap weight and BFT; however, no candidate gene was found in these regions. In addition, based on other significant SNPs, two positional candidate genes, NSRP1 and CADPS, were proposed to influence weight. In conclusion, this is the first study report using GBS data to identify the significant SNPs for weight and BFT. A total of four particularly interesting SNPs and one potential candidate genes (DOCK7) were found for these traits in domestic pigs. This study improves our knowledge to better understand the complex genetic architecture of weight and BFT, but further validation studies of these candidate loci and genes are recommended in pigs  相似文献   

10.
11.
Clinical-chemical traits are essential when examining the health status of individuals. The aim of this study was to identify quantitative trait loci (QTL) and the associated positional candidate genes affecting clinical-chemical traits in a reciprocal F(2) intercross between Landrace and Korean native pigs. Following an overnight fast, 25 serum phenotypes related to clinical-chemical traits (e.g., hepatic function parameters, renal function parameters, electrolyte, lipids) were measured in >970 F(2) progeny. All experimental samples were subjected to genotyping analysis using 165 microsatellite markers located across the genome. We identified eleven genome-wide significant QTL in six chromosomal regions (SSC 2, 7, 8, 13, 14, and 15) and 59 suggestive QTL in 17 chromosomal regions (SSC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, and 18). We also observed significant effects of reciprocal crosses on some of the traits, which would seem to result from maternal effect, QTL on sex chromosomes, imprinted genes, or genetic difference in mitochondrial DNA. The role of genomic imprinting in clinical-chemical traits also was investigated. Genome-wide analysis revealed a significant evidence for an imprinted QTL in SSC4 affecting serum amylase levels. Additionally, a series of bivariate linkage analysis provided strong evidence that QTL in SSC 2, 13, 15, and 18 have a pleiotropic effect on clinical-chemical traits. In conclusion, our study detected both novel and previously reported QTL influencing clinical-chemical traits in pigs. The identified QTL together with the positional candidate genes identified here could play an important role in elucidating the genetic structure of clinical-chemical phenotype variation in humans and swine.  相似文献   

12.
13.

Background

We conducted a genome-wide linkage analysis to identify quantitative trait loci (QTL) that influence meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Thirteen meat quality-related traits of the m. longissimus lumborum et thoracis were measured in more than 830 F2 progeny. All these animals were genotyped with 173 microsatellite markers located throughout the pig genome, and the GridQTL program based on the least squares regression model was used to perform the QTL analysis.

Results

We identified 23 genome-wide significant QTL in eight chromosome regions (SSC1, 2, 6, 7, 9, 12, 13, and 16) (SSC for Sus Scrofa) and detected 51 suggestive QTL in the 17 chromosome regions. QTL that affect 10 meat quality traits were detected on SSC12 and were highly significant at the genome-wide level. In particular, the QTL with the largest effect affected crude fat percentage and explained 22.5% of the phenotypic variance (F-ratio = 278.0 under the additive model, nominal P = 5.5 × 10−55). Interestingly, the QTL on SSC12 that influenced meat quality traits showed an obvious trend for co-localization.

Conclusions

Our results confirm several previously reported QTL. In addition, we identified novel QTL for meat quality traits, which together with the associated positional candidate genes improve the knowledge on the genetic structure that underlies genetic variation for meat quality traits in pigs.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0080-6) contains supplementary material, which is available to authorized users.  相似文献   

14.
We performed a whole‐genome scan with 110 informative microsatellites in a commercial Duroc population for which growth, fatness, carcass and meat quality phenotypes were available. Importantly, meat quality traits were recorded in two different muscles, that is, gluteus medius (GM) and longissimus thoracis et lumborum (LTL), to find out whether these traits are determined by muscle‐specific genetic factors. At the whole‐population level, three genome‐wide QTL were identified for carcass weight (SSC7, 60 cM), meat redness (SSC13, 84 cM) and yellowness (SSC15, 108 cM). Within‐family analyses allowed us to detect genome‐wide significant QTL for muscle loin depth between the 3rd and 4th ribs (SSC15, 54 cM), backfat thickness (BFT) in vivo (SSC10, 58 cM), ham weight (SSC9, 69 cM), carcass weight (SSC7, 60 cM; SSC9, 68 cM), BFT on the last rib (SSC11, 48 cM) and GM redness (SSC8, 85 cM; SSC13, 84 cM). Interestingly, there was low positional concordance between meat quality QTL maps obtained for GM and LTL. As a matter of fact, the three genome‐wide significant QTL for colour traits (SSC8, SSC13 and SSC15) that we detected in our study were all GM specific. This result suggests that QTL effects might be modulated to a certain extent by genetic and environmental factors linked to muscle function and anatomical location.  相似文献   

15.
16.
Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA‐seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.  相似文献   

17.
18.
19.
Solute carrier family 27 (fatty acid transporter), member 4 (SLC27A4) is a fatty acyl-CoA synthetase producing very long chain fatty acid-CoA for lipid metabolic pathways, suggesting that the SLC27A4 gene is a potential candidate gene for traits related to fat deposition in animals. This study was conducted to sequence the genomic region from exon 6 to 12 of porcine SLC27A4 and detect polymorphisms by comparative sequencing. In silico mapping assigned SLC27A4 gene between gene COQ4 (coenzyme Q4 homolog) and URM1 (ubiquitin related modifier 1 homolog) on pig chromosome 1q24-q2.12 where significant QTL affecting backfat depth had previously been identified. Thirty six putative sites of variation were detected, of which 31 polymorphisms including 28 SNPs and 3 indels were located in the intronic region, and 5 in the exonic regions. The g.1777G>A (EU703769) in intron 8 was confirmed by PCR-RFLP using HpaII restriction enzyme and further genotyped in four Chinese native pig breeds (Meishan, Erhualian, Tongcheng and Qingping) and three western meat-type pig breeds (Duroc, Large White and Landrace). Allele G was exclusively present in Tongcheng and Qingping pigs and predominant in the other pig populations analyzed. Significant differences of backfat at rump, body weight at birth and average daily gain on weaning between the AG and GG genotype were observed in Landrace pig population (P < 0.05).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号