首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The African trypanosome Trypanosoma brucei monoallelically expresses one of more than 1000 Variant Surface Glycoprotein (VSG) genes. The active VSG is transcribed from one of about 15 telomeric VSG expression sites (ESs). It is unclear how monoallelic expression of VSG is controlled, and how inactive VSG ESs are silenced. Here, we show that blocking synthesis of the T. brucei FACT subunit TbSpt16 triggers a G2/early M phase cell cycle arrest in both bloodstream and insect form T. brucei. Segregation of T. brucei minichromosomes in these stalled cells is impaired, implicating FACT in maintenance of centromeres. Strikingly, knock-down of TbSpt16 results in 20- to 23-fold derepression of silent VSG ES promoters in bloodstream form T. brucei, with derepression specific to the G2/M cell cycle stage. In insect form T. brucei TbSpt16 knock-down results in 16- to 25-fold VSG ES derepression. Using chromatin immunoprecipitation (ChIP), TbSpt16 was found to be particularly enriched at the promoter region of silent but not active VSG ESs in bloodstream form T. brucei. The chromatin remodeler FACT is therefore implicated in maintenance of repressed chromatin present at silent VSG ES promoters, but is also essential for chromosome segregation presumably through maintenance of functional centromeres.  相似文献   

2.
3.
4.
Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.  相似文献   

5.
6.
7.
8.
Trypanosoma brucei faces relentless immune attack in the mammalian bloodstream, where it is protected by an essential coat of Variant Surface Glycoprotein (VSG) comprising ~10% total protein. The active VSG gene is in a Pol I‐transcribed telomeric expression site (ES). We investigated factors mediating these extremely high levels of VSG expression by inserting ectopic VSG117 into VSG221 expressing T. brucei. Mutational analysis of the ectopic VSG 3′UTR demonstrated the essentiality of a conserved 16‐mer for mRNA stability. Expressing ectopic VSG117 from different genomic locations showed that functional VSG levels could be produced from a gene 60 kb upstream of its normal telomeric location. High, but very heterogeneous levels of VSG117 were obtained from the Pol I‐transcribed rDNA. Blocking VSG synthesis normally triggers a precise precytokinesis cell‐cycle checkpoint. VSG117 expression from the rDNA was not adequate for functional complementation, and the stalled cells arrested prior to cytokinesis. However, VSG levels were not consistently low enough to trigger a characteristic ‘VSG synthesis block’ cell‐cycle checkpoint, as some cells reinitiated S phase. This demonstrates the essentiality of a Pol I‐transcribed ES, as well as conserved VSG 3′UTR 16‐mer sequences for the generation of functional levels of VSG expression in bloodstream form T. brucei.  相似文献   

9.
10.
Regulation of the CLN1 and CLN2 G1 cyclin genes controls cell cycle progression. The SBF activator binds to these promoters but is kept inactive by the Whi5 and Stb1 inhibitors. The Cdc28 cyclin‐dependent kinase phosphorylates Whi5, ending the inhibition. Our chromatin immunoprecipitation (ChIP) experiments show that SBF, Whi5 and Stb1 recruit both Cdc28 and the Rpd3(L) histone deacetylase to CLN promoters, extending the analogy with mammalian G1 cyclin promoters in which Rb recruits histone deacetylases. Finally, we show that the SBF subunit Swi6 recruits the FACT chromatin reorganizer to SBF‐ and MBF‐regulated genes. Mutations affecting FACT reduce the transient nucleosome eviction seen at these promoters during a normal cell cycle and also reduce expression. Temperature‐sensitive mutations affecting FACT and Cdc28 can be suppressed by disruption of STB1 and WHI5, suggesting that one critical function of FACT and Cdc28 is overcoming chromatin repression at G1 cyclin promoters. Thus, SBF recruits complexes to promoters that either enhance (FACT) or repress (Rpd3L) accessibility to chromatin, and also recruits the kinase that activates START.  相似文献   

11.
Trypanosoma brucei undergoes antigenic variation by periodically switching the expression of its variant surface glycoprotein (VSG) genes (vsg) among an estimated 20-40 telomere-linked expression sites (ES), only one of which is fully active at a given time. We found that in bloodstream trypanosomes one ES is transcribed at a high level and other ESs are expressed at low levels, resulting in organisms containing one abundant VSG mRNA and several rare VSG RNAs. Some of the rare VSG mRNAs come from monocistronic ESs in which the promoters are situated about 2 kilobases upstream of the vsg, in contrast to the polycistronic ESs in which the promoters are located 45-60 kilobases upstream of the vsg. The monocistronic ES containing the MVAT4 vsg does not include the ES-associated genes (esag) that occur between the promoter and the vsg in polycistronic ESs. However, bloodstream MVAT4 trypanosomes contain the mRNAs for many different ESAGs 6 and 7 (transferrin receptors), suggesting that polycistronic ESs are partially active in this clone. To explain these findings, we propose a model in which both mono- and polycistronic ESs are controlled by a similar mechanism throughout the parasite's life cycle. Certain VSGs are preferentially expressed in metacyclic versus bloodstream stages as a result of differences in ESAG expression and the proximity of the promoters to the vsg and telomere.  相似文献   

12.
13.
14.
African trypanosomes evade the host immune response through antigenic variation, which is achieved by periodically expressing different variant surface glycoproteins (VSGs). VSG expression is monoallelic such that only one of approximately 15 telomeric VSG expression sites (ESs) is transcribed at a time. Epigenetic regulation is involved in VSG control but our understanding of the mechanisms involved remains incomplete. Histone deacetylases are potential drug targets for diseases caused by protozoan parasites. Here, using recombinant expression we show that the essential Trypanosoma brucei deacetylases, DAC1 (class I) and DAC3 (class II) display histone deacetylase activity. Both DAC1 and DAC3 are nuclear proteins in the bloodstream stage parasite, while only DAC3 remains concentrated in the nucleus in insect‐stage cells. Consistent with developmentally regulated localization, DAC1 antagonizes SIR2rp1‐dependent telomeric silencing only in the bloodstream form, indicating a conserved role in the control of silent chromatin domains. In contrast, DAC3 is specifically required for silencing at VSG ES promoters in both bloodstream and insect‐stage cells. We conclude that DAC1 and DAC3 play distinct roles in subtelomeric gene silencing and that DAC3 represents the first readily druggable target linked to VSG ES control in the African trypanosome.  相似文献   

15.
16.
17.
Bibo Li 《Eukaryotic cell》2015,14(3):196-205
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号